نمایش مختصر رکورد

dc.contributor.authorAbdollahi, Alirezaen_US
dc.contributor.authorJanbaz, Shahroozen_US
dc.contributor.authorOboudi, Mohammad Rezaen_US
dc.date.accessioned1399-07-09T11:37:03Zfa_IR
dc.date.accessioned2020-09-30T11:37:03Z
dc.date.available1399-07-09T11:37:03Zfa_IR
dc.date.available2020-09-30T11:37:03Z
dc.date.issued2013-12-01en_US
dc.date.issued1392-09-10fa_IR
dc.date.submitted2013-07-20en_US
dc.date.submitted1392-04-29fa_IR
dc.identifier.citationAbdollahi, Alireza, Janbaz, Shahrooz, Oboudi, Mohammad Reza. (2013). Graphs cospectral with a friendship graph or its complement. Transactions on Combinatorics, 2(4), 37-52. doi: 10.22108/toc.2013.3621en_US
dc.identifier.issn2251-8657
dc.identifier.issn2251-8665
dc.identifier.urihttps://dx.doi.org/10.22108/toc.2013.3621
dc.identifier.urihttp://toc.ui.ac.ir/article_3621.html
dc.identifier.urihttps://iranjournals.nlai.ir/handle/123456789/405669
dc.description.abstract‎Let $n$ be any positive integer and $F_n$ be the friendship (or Dutch windmill) graph with $2n+1$ vertices and $3n$ edges‎. ‎Here we study graphs with the same adjacency spectrum as $F_n$‎. ‎Two graphs are called cospectral if the eigenvalues multiset of their adjacency matrices are the same‎. ‎Let $G$ be a graph cospectral with $F_n$‎. ‎Here we prove that if $G$ has no cycle of length $4$ or $5$‎, ‎then $Gcong F_n$‎. ‎Moreover if $G$ is connected and planar then $Gcong F_n$‎. ‎All but one of connected components of $G$ are isomorphic to $K_2$‎. ‎The complement $overline{F_n}$ of the friendship graph is determined by its adjacency eigenvalues‎, ‎that is‎, ‎if $overline{F_n}$ is cospectral with a graph $H$‎, ‎then $Hcong overline{F_n}$‎.en_US
dc.format.extent394
dc.format.mimetypeapplication/pdf
dc.languageEnglish
dc.language.isoen_US
dc.publisherUniversity of Isfahanen_US
dc.relation.ispartofTransactions on Combinatoricsen_US
dc.relation.isversionofhttps://dx.doi.org/10.22108/toc.2013.3621
dc.subjectFriendship graphsen_US
dc.subjectcospectral graphsen_US
dc.subjectadjacency eigenvaluesen_US
dc.subject05C31 Graph polynomialsen_US
dc.subject05C50 Graphs and linear algebra (matrices, eigenvalues, etc.)en_US
dc.titleGraphs cospectral with a friendship graph or its complementen_US
dc.typeTexten_US
dc.typeResearch Paperen_US
dc.contributor.departmentUniversity of Isfahanen_US
dc.contributor.departmentUniversity of Isfahanen_US
dc.contributor.departmentUniversity of Isfahanen_US
dc.citation.volume2
dc.citation.issue4
dc.citation.spage37
dc.citation.epage52


فایل‌های این مورد

Thumbnail

این مورد در مجموعه‌های زیر وجود دارد:

نمایش مختصر رکورد