| dc.contributor.author | Abdollahi, Alireza | en_US |
| dc.contributor.author | Janbaz, Shahrooz | en_US |
| dc.contributor.author | Oboudi, Mohammad Reza | en_US |
| dc.date.accessioned | 1399-07-09T11:37:03Z | fa_IR |
| dc.date.accessioned | 2020-09-30T11:37:03Z | |
| dc.date.available | 1399-07-09T11:37:03Z | fa_IR |
| dc.date.available | 2020-09-30T11:37:03Z | |
| dc.date.issued | 2013-12-01 | en_US |
| dc.date.issued | 1392-09-10 | fa_IR |
| dc.date.submitted | 2013-07-20 | en_US |
| dc.date.submitted | 1392-04-29 | fa_IR |
| dc.identifier.citation | Abdollahi, Alireza, Janbaz, Shahrooz, Oboudi, Mohammad Reza. (2013). Graphs cospectral with a friendship graph or its complement. Transactions on Combinatorics, 2(4), 37-52. doi: 10.22108/toc.2013.3621 | en_US |
| dc.identifier.issn | 2251-8657 | |
| dc.identifier.issn | 2251-8665 | |
| dc.identifier.uri | https://dx.doi.org/10.22108/toc.2013.3621 | |
| dc.identifier.uri | http://toc.ui.ac.ir/article_3621.html | |
| dc.identifier.uri | https://iranjournals.nlai.ir/handle/123456789/405669 | |
| dc.description.abstract | Let $n$ be any positive integer and $F_n$ be the friendship (or Dutch windmill) graph with $2n+1$ vertices and $3n$ edges. Here we study graphs with the same adjacency spectrum as $F_n$. Two graphs are called cospectral if the eigenvalues multiset of their adjacency matrices are the same. Let $G$ be a graph cospectral with $F_n$. Here we prove that if $G$ has no cycle of length $4$ or $5$, then $Gcong F_n$. Moreover if $G$ is connected and planar then $Gcong F_n$. All but one of connected components of $G$ are isomorphic to $K_2$. The complement $overline{F_n}$ of the friendship graph is determined by its adjacency eigenvalues, that is, if $overline{F_n}$ is cospectral with a graph $H$, then $Hcong overline{F_n}$. | en_US |
| dc.format.extent | 394 | |
| dc.format.mimetype | application/pdf | |
| dc.language | English | |
| dc.language.iso | en_US | |
| dc.publisher | University of Isfahan | en_US |
| dc.relation.ispartof | Transactions on Combinatorics | en_US |
| dc.relation.isversionof | https://dx.doi.org/10.22108/toc.2013.3621 | |
| dc.subject | Friendship graphs | en_US |
| dc.subject | cospectral graphs | en_US |
| dc.subject | adjacency eigenvalues | en_US |
| dc.subject | 05C31 Graph polynomials | en_US |
| dc.subject | 05C50 Graphs and linear algebra (matrices, eigenvalues, etc.) | en_US |
| dc.title | Graphs cospectral with a friendship graph or its complement | en_US |
| dc.type | Text | en_US |
| dc.type | Research Paper | en_US |
| dc.contributor.department | University of Isfahan | en_US |
| dc.contributor.department | University of Isfahan | en_US |
| dc.contributor.department | University of Isfahan | en_US |
| dc.citation.volume | 2 | |
| dc.citation.issue | 4 | |
| dc.citation.spage | 37 | |
| dc.citation.epage | 52 | |