نمایش مختصر رکورد

dc.contributor.authorNohegar, A.en_US
dc.contributor.authorHeydarzadeh, M.en_US
dc.contributor.authorMalekian, A.en_US
dc.date.accessioned1399-07-09T11:00:27Zfa_IR
dc.date.accessioned2020-09-30T11:00:27Z
dc.date.available1399-07-09T11:00:27Zfa_IR
dc.date.available2020-09-30T11:00:27Z
dc.date.issued2013-01-01en_US
dc.date.issued1391-10-12fa_IR
dc.date.submitted2013-02-25en_US
dc.date.submitted1391-12-07fa_IR
dc.identifier.citationNohegar, A., Heydarzadeh, M., Malekian, A.. (2013). Assessment of Severity of Droughts Using Geostatistics Method(Case Study: Southern Iran). Desert, 18(1), 79-87. doi: 10.22059/jdesert.2013.36278en_US
dc.identifier.issn2008-0875
dc.identifier.issn475-2345X
dc.identifier.urihttps://dx.doi.org/10.22059/jdesert.2013.36278
dc.identifier.urihttps://jdesert.ut.ac.ir/article_36278.html
dc.identifier.urihttps://iranjournals.nlai.ir/handle/123456789/393132
dc.description.abstractDrought monitoring is a fundamental component of drought risk management. It is normally performed using<br />various drought indices that are effectively continuous functions of rainfall and other hydrometeorological variables.<br />In many instances, drought indices are used for monitoring purposes. Geostatistical methods allow the interpolation<br />of spatially referenced data and the prediction of values for arbitrary points in the area of interest. In this research,<br />several geostatistical methods, including ordinary kriging (OK), indicator kriging (IK), residual kriging (RK),<br />probability kriging (Pk), simple kriging (SK), universal kriging (UK), and inverse distance weighted (IDW) methods<br />were assessed for the derivation of maps of drought indices at 12 climatic stations in southern Iran. Data regarding<br />monthly rainfall, temperature, wind, relative humidity, and sunshine of three periods (1985, 1995, and 2005) were<br />taken from 12 meteorological synoptic stations and distributed areas. Based on the used error criteria, kriging<br />methods were used for spatial analysis of the drought indexes and were selected as the best method. Results also<br />showed that the lowest error (RMSE) is related to the kriging method. The results indicated that IK with tree<br />frequency is more appropriate for the spatial analysis of the RDI index, and the Pk and SK methods are more<br />appropriate for the spatial analysis of the SPI index. The kriging methods mean errors (RMSE) selected years for RDI<br />and SPI index respectively are 0.85 and 0.84. In several cases, the “moderately dry" class received a more critical<br />value by RDI. The results showed that by utilizing the ET0, the RDI can be very sensitive to climatic variability.en_US
dc.format.extent854
dc.format.mimetypeapplication/pdf
dc.languageEnglish
dc.language.isoen_US
dc.publisherUniversity of Tehranen_US
dc.relation.ispartofDeserten_US
dc.relation.isversionofhttps://dx.doi.org/10.22059/jdesert.2013.36278
dc.subjectDroughten_US
dc.subjectRDIen_US
dc.subjectSPIen_US
dc.subjectGeostatistics Methoden_US
dc.subjectSouth of Iranen_US
dc.titleAssessment of Severity of Droughts Using Geostatistics Method(Case Study: Southern Iran)en_US
dc.typeTexten_US
dc.typeResearch Paperen_US
dc.contributor.departmentUniversity of Tehran, Tehran, Iranen_US
dc.contributor.departmentHormozgan University, Bandar Abbas, Iranen_US
dc.contributor.departmentFaculty of Natural Resources, University of Tehran, Karaj, Iranen_US
dc.citation.volume18
dc.citation.issue1
dc.citation.spage79
dc.citation.epage87


فایل‌های این مورد

Thumbnail

این مورد در مجموعه‌های زیر وجود دارد:

نمایش مختصر رکورد