نمایش مختصر رکورد

dc.contributor.authorRezaianzadeh, Abbasen_US
dc.contributor.authorSepandi, Mojtabaen_US
dc.contributor.authorRahimikaerooni, Salaren_US
dc.date.accessioned1399-07-08T18:09:42Zfa_IR
dc.date.accessioned2020-09-29T18:09:42Z
dc.date.available1399-07-08T18:09:42Zfa_IR
dc.date.available2020-09-29T18:09:42Z
dc.date.issued2016-11-01en_US
dc.date.issued1395-08-11fa_IR
dc.date.submitted2016-09-05en_US
dc.date.submitted1395-06-15fa_IR
dc.identifier.citationRezaianzadeh, Abbas, Sepandi, Mojtaba, Rahimikaerooni, Salar. (2016). Assessment of Breast Cancer Risk in an Iranian Female Population Using Bayesian Networks with Varying Node Number. Asian Pacific Journal of Cancer Prevention, 17(11), 4913-4916. doi: 10.22034/APJCP.2016.17.11.4913en_US
dc.identifier.issn1513-7368
dc.identifier.issn2476-762X
dc.identifier.urihttps://dx.doi.org/10.22034/APJCP.2016.17.11.4913
dc.identifier.urihttp://journal.waocp.org/article_41308.html
dc.identifier.urihttps://iranjournals.nlai.ir/handle/123456789/37623
dc.description.abstract<br /> <strong><span style="font-size: small;">Objective: </span></strong><span style="font-family: Times New Roman,Times New Roman; font-size: small;"><span style="font-family: Times New Roman,Times New Roman; font-size: small;">As a source of information, medical data can feature hidden relationships. However, the high volume of datasets and complexity of decision-making in medicine introduce difficulties for analysis and interpretation and processing steps may be needed before the data can be used by clinicians in their work. This study focused on the use of Bayesian models with different numbers of nodes to aid clinicians in breast cancer risk estimation. </span></span><strong><span style="font-size: small;">Methods: </span></strong><span style="font-family: Times New Roman,Times New Roman; font-size: small;"><span style="font-family: Times New Roman,Times New Roman; font-size: small;">Bayesian </span></span><span style="font-family: Times New Roman,Times New Roman; font-size: small;"><span style="font-family: Times New Roman,Times New Roman; font-size: small;">networks (BNs) with a retrospectively collected dataset including mammographic details, risk factor exposure, and clinical findings was assessed for prediction of the probability of breast cancer in individual patients. Area under the receiver-operating characteristic curve (AUC), accuracy, sensitivity, specificity, and positive and negative predictive values were used to evaluate discriminative performance. </span></span><strong><span style="font-size: small;">Result: </span></strong><span style="font-family: Times New Roman,Times New Roman; font-size: small;"><span style="font-family: Times New Roman,Times New Roman; font-size: small;">A network incorporating selected features performed better (AUC = 0.94) than that incorporating all the features (AUC = 0.93). The results revealed no significant difference among 3 models regarding performance indices at the 5% significance level. </span></span><strong><span style="font-size: small;">Conclusion: </span></strong><span style="font-family: Times New Roman,Times New Roman; font-size: small;"><span style="font-family: Times New Roman,Times New Roman; font-size: small;">BNs could effectively discriminate malignant from benign abnormalities and accurately predict the risk of breast cancer in individuals. Moreover, the overall performance of the 9-node BN was better, and due to the lower number of nodes it might </span></span><span style="font-family: Times New Roman,Times New Roman; font-size: small;"><span style="font-family: Times New Roman,Times New Roman; font-size: small;">be more readily be applied in clinical settings. </span></span>en_US
dc.format.extent326
dc.format.mimetypeapplication/pdf
dc.languageEnglish
dc.language.isoen_US
dc.publisherWest Asia Organization for Cancer Prevention (WAOCP)en_US
dc.relation.ispartofAsian Pacific Journal of Cancer Preventionen_US
dc.relation.isversionofhttps://dx.doi.org/10.22034/APJCP.2016.17.11.4913
dc.subjectbreast canceren_US
dc.subjectBayesian Networken_US
dc.subjectRisk assesmenten_US
dc.titleAssessment of Breast Cancer Risk in an Iranian Female Population Using Bayesian Networks with Varying Node Numberen_US
dc.typeTexten_US
dc.typeResearch Articlesen_US
dc.contributor.departmentcolorectal Research Center, Shiraz Uiversity of Medical Sciences, Shiraz , Iran.en_US
dc.contributor.departmentBaqyiatallah University of Medical Sciencesen_US
dc.contributor.departmentcolorectal Research Center, Shiraz Uiversity of Medical Sciences, Shiraz , Iran.en_US
dc.citation.volume17
dc.citation.issue11
dc.citation.spage4913
dc.citation.epage4916


فایل‌های این مورد

Thumbnail

این مورد در مجموعه‌های زیر وجود دارد:

نمایش مختصر رکورد