نمایش مختصر رکورد

dc.contributor.authorHosseini, Amir Hosseinen_US
dc.contributor.authorGhadery-Fahliyany, Hosseinen_US
dc.contributor.authorWood, Daviden_US
dc.contributor.authorChoubineh, Abouzaren_US
dc.date.accessioned1399-07-09T09:40:13Zfa_IR
dc.date.accessioned2020-09-30T09:40:13Z
dc.date.available1399-07-09T09:40:13Zfa_IR
dc.date.available2020-09-30T09:40:13Z
dc.date.issued2020-01-01en_US
dc.date.issued1398-10-11fa_IR
dc.date.submitted2019-11-16en_US
dc.date.submitted1398-08-25fa_IR
dc.identifier.citationHosseini, Amir Hossein, Ghadery-Fahliyany, Hossein, Wood, David, Choubineh, Abouzar. (2020). Artificial Intelligence-based Modeling of Interfacial Tension for Carbon Dioxide Storage. Gas Processing Journal, 8(1), 83-92. doi: 10.22108/gpj.2020.119977.1069en_US
dc.identifier.issn2322-3251
dc.identifier.issn2345-4172
dc.identifier.urihttps://dx.doi.org/10.22108/gpj.2020.119977.1069
dc.identifier.urihttp://gpj.ui.ac.ir/article_24625.html
dc.identifier.urihttps://iranjournals.nlai.ir/handle/123456789/366314
dc.description.abstractA key variable for determining carbon dioxide (CO2) storage capacity in sub-surface reservoirs is the interfacial tension (IFT) between formation water (brine) and injected gas. Establishing efficient and precise models for estimating CO2 – brine IFT from measurements of independent variables is essential. This is the case, because laboratory techniques for determining IFT are time-consuming, costly and require complex interpretation methods. For the datasets used in the current study, correlation coefficients between the input variables and measured IFT suggests that CO2 density and pressure are the most influential variables, whereas brine density is the least influential. Six artificial neural network configurations are developed and evaluated to determine their relative accuracy in predicting CO2 – brine IFT. Three models involve multilayer perceptron (MLP) tuned with Levenberg-Marquardt, Bayesian regularization and scaled conjugate gradient back-propagation algorithms, respectively. Three models involve the radial basis function (RBF) trained with particle swarm optimization, differential evolution and farmland fertility optimization algorithms, respectively. The six models all generate CO2 – brine IFT predictions with high accuracy (RMSEen_US
dc.format.extent588
dc.format.mimetypeapplication/pdf
dc.languageEnglish
dc.language.isoen_US
dc.publisherUniversity of Isfahanen_US
dc.relation.ispartofGas Processing Journalen_US
dc.relation.isversionofhttps://dx.doi.org/10.22108/gpj.2020.119977.1069
dc.subjectInterfacial Tension (IFT)en_US
dc.subjectCO2 Storageen_US
dc.subjectMulti-layer perceptronen_US
dc.subjectRadial basis functionen_US
dc.subjectNeural Network Predictionen_US
dc.subjectIFT Influencing Variablesen_US
dc.titleArtificial Intelligence-based Modeling of Interfacial Tension for Carbon Dioxide Storageen_US
dc.typeTexten_US
dc.typeOriginal Articleen_US
dc.contributor.departmentPetroleum Department, Semnan University, Semnan, Iranen_US
dc.contributor.departmentPetroleum Department, Shahid-Bahonar University, Kerman, Iranen_US
dc.contributor.departmentDWA Energy Limited, Lincoln, United Kingdomen_US
dc.contributor.departmentPetroleum Department, Petroleum University of Technology, Ahwaz, Iranen_US
dc.citation.volume8
dc.citation.issue1
dc.citation.spage83
dc.citation.epage92
nlai.contributor.orcid0000-0003-3202-4069


فایل‌های این مورد

Thumbnail

این مورد در مجموعه‌های زیر وجود دارد:

نمایش مختصر رکورد