نمایش مختصر رکورد

dc.contributor.authorSayadi, Mohammaden_US
dc.contributor.authoromidi, meysamen_US
dc.date.accessioned1399-07-09T08:01:38Zfa_IR
dc.date.accessioned2020-09-30T08:01:38Z
dc.date.available1399-07-09T08:01:38Zfa_IR
dc.date.available2020-09-30T08:01:38Z
dc.date.issued2019-12-01en_US
dc.date.issued1398-09-10fa_IR
dc.date.submitted2019-07-20en_US
dc.date.submitted1398-04-29fa_IR
dc.identifier.citationSayadi, Mohammad, omidi, meysam. (2019). Prediction-Based Portfolio Optimization Model for Iran’s Oil Dependent Stocks Using Data Mining Methods. Iranian Journal of Economic Studies, 8(2), 225-252. doi: 10.22099/ijes.2020.34367.1595en_US
dc.identifier.issn2322-1402
dc.identifier.urihttps://dx.doi.org/10.22099/ijes.2020.34367.1595
dc.identifier.urihttp://ijes.shirazu.ac.ir/article_5560.html
dc.identifier.urihttps://iranjournals.nlai.ir/handle/123456789/333558
dc.description.abstractThis study applied a prediction-based portfolio optimization model to explore the results of portfolio predicament in the Tehran Stock Exchange. To this aim, first, the data mining approach was used to predict the petroleum products and chemical industry using clustering stock market data. Then, some effective factors, such as crude oil price, exchange rate, global interest rate, gold price, and S&P 500 index, were used to estimate each industry index using Radial Basis Function and Multi-Layer Perceptron neural networks. Finally, by comparing the validation ratios in a bullish market using K-Means, SOM, and Fuzzy C-means clustering algorithms, the best algorithm was employed to predict indicators for each industry. The sample was collected between December 15, 2008, and April 25, 2018. The results revealed that the Multi-Layer Perceptron algorithm had the highest accuracy and was the best option for portfolio predicament. However, the Fuzzy C-means algorithm produced the best clusters. Practical results showed that Sepahan oil and Kharg petrochemical stocks were the most important stocks in the short term while Kharg petrochemical, Fannavaran petrochemical, and Tehran oil refinery stocks made higher contributions in a stock portfolio in the medium- or long-term.en_US
dc.format.extent1037
dc.format.mimetypeapplication/pdf
dc.languageEnglish
dc.language.isoen_US
dc.publisherShiraz Universityen_US
dc.publisherدانشگاه شیرازfa_IR
dc.relation.ispartofIranian Journal of Economic Studiesen_US
dc.relation.ispartof(Iranian Journal of Economic Studies (IJESfa_IR
dc.relation.isversionofhttps://dx.doi.org/10.22099/ijes.2020.34367.1595
dc.subjectStock indexen_US
dc.subjectPortfolio Optimizationen_US
dc.subjectData miningen_US
dc.subjectArtificial neural networksen_US
dc.subjectclusteringen_US
dc.titlePrediction-Based Portfolio Optimization Model for Iran’s Oil Dependent Stocks Using Data Mining Methodsen_US
dc.typeTexten_US
dc.typeResearch Paperen_US
dc.contributor.departmentFaculty of Economics, Kharazmi University, Tehran, Iran.en_US
dc.contributor.departmentFaculty of Economics, Kharazmi University, Tehran, Iran.en_US
dc.citation.volume8
dc.citation.issue2
dc.citation.spage225
dc.citation.epage252


فایل‌های این مورد

Thumbnail

این مورد در مجموعه‌های زیر وجود دارد:

نمایش مختصر رکورد