نمایش مختصر رکورد

dc.contributor.authorKumar Giri, Pravashen_US
dc.contributor.authorKumar Maiti, Manasen_US
dc.contributor.authorMaiti, Manoranjanen_US
dc.date.accessioned1399-07-09T07:53:34Zfa_IR
dc.date.accessioned2020-09-30T07:53:35Z
dc.date.available1399-07-09T07:53:34Zfa_IR
dc.date.available2020-09-30T07:53:35Z
dc.date.issued2016-10-01en_US
dc.date.issued1395-07-10fa_IR
dc.date.submitted2015-06-25en_US
dc.date.submitted1394-04-04fa_IR
dc.identifier.citationKumar Giri, Pravash, Kumar Maiti, Manas, Maiti, Manoranjan. (2016). Profit maximization solid transportation problem under budget constraint using fuzzy measures. Iranian Journal of Fuzzy Systems, 13(5), 35-63. doi: 10.22111/ijfs.2016.2732en_US
dc.identifier.issn1735-0654
dc.identifier.issn2676-4334
dc.identifier.urihttps://dx.doi.org/10.22111/ijfs.2016.2732
dc.identifier.urihttps://ijfs.usb.ac.ir/article_2732.html
dc.identifier.urihttps://iranjournals.nlai.ir/handle/123456789/330999
dc.description.abstractFixed charge solid transportation problems are formulated as profit maximization problems under a budget constraint at each destination. Here item is purchased in different depots at different prices. Accordingly the item is transported to different destinations from different depots using different vehicles. Units<br />are sold from different destinations to the customers at different selling prices. Here selling prices, purchasing costs, unit transportation costs, fixed charges, sources at origins, demands at destinations, conveyances capacities are assumed to be crisp or fuzzy. Budget constraints at destinations are imposed. It<br />is also assumed that transported units are integer multiple of packets. So the problem is formulated as constraint optimization integer programming problem in crisp and fuzzy environments. As<br />optimization of fuzzy objective as well as consideration of fuzzy constraint is not well defined, different measures possibility/necessity/credibility of fuzzy event are used to transform the problem into equivalent crisp problem.<br /> The reduced crisp problem is solved following generalized reduced gradient(GRG) method using lingo software.<br /> A  dominance  based genetic algorithm (DBGA) and a particle swarm optimization (PSO) technique using swap sequence are also developed for this purpose and are used to solve the model.  The models are illustrated with numerical examples. The results obtained using DBGA and PSO are compared with those obtained from GRG.<br />Moreover, a statistical analysis  is presented to compare the algorithms.en_US
dc.languageEnglish
dc.language.isoen_US
dc.publisherUniversity of Sistan and Baluchestanen_US
dc.relation.ispartofIranian Journal of Fuzzy Systemsen_US
dc.relation.isversionofhttps://dx.doi.org/10.22111/ijfs.2016.2732
dc.subjectSolid transportation problemen_US
dc.subjectBudget constraintsen_US
dc.subjectPossibility /Necessity/Credibility measureen_US
dc.subjectDominance based genetic algorithmen_US
dc.subjectParticle Swarm Optimizationen_US
dc.titleProfit maximization solid transportation problem under budget constraint using fuzzy measuresen_US
dc.typeTexten_US
dc.typeResearch Paperen_US
dc.contributor.departmentDepartment of Applied Mathematics with Oceanology and Computer Programming, Vidyasagar University, Paschim-Medinipur, W.B. 721102, Indiaen_US
dc.contributor.departmentDepartment of Mathematics, Mahishadal Raj College, Mahishadal, Purba-Medinipur, W.B.-721628, Indiaen_US
dc.contributor.departmentDepartment of Applied Mathematics with Oceanology and Computer Programming, Vidyasagar University, Paschim-Medinipur, W.B. 721102, Indiaen_US
dc.citation.volume13
dc.citation.issue5
dc.citation.spage35
dc.citation.epage63


فایل‌های این مورد

فایل‌هااندازهقالبمشاهده

فایلی با این مورد مرتبط نشده است.

این مورد در مجموعه‌های زیر وجود دارد:

نمایش مختصر رکورد