نمایش مختصر رکورد

dc.contributor.authorKalhor, A.en_US
dc.contributor.authorAarabi, B. N.en_US
dc.contributor.authorLucas, C.en_US
dc.contributor.authorTarvirdizadeh, B.en_US
dc.date.accessioned1399-07-09T07:53:07Zfa_IR
dc.date.accessioned2020-09-30T07:53:07Z
dc.date.available1399-07-09T07:53:07Zfa_IR
dc.date.available2020-09-30T07:53:07Z
dc.date.issued2015-04-01en_US
dc.date.issued1394-01-12fa_IR
dc.date.submitted2013-09-25en_US
dc.date.submitted1392-07-03fa_IR
dc.identifier.citationKalhor, A., Aarabi, B. N., Lucas, C., Tarvirdizadeh, B.. (2015). A TS Fuzzy Model Derived from a Typical Multi-Layer Perceptron. Iranian Journal of Fuzzy Systems, 12(2), 1-21. doi: 10.22111/ijfs.2015.1979en_US
dc.identifier.issn1735-0654
dc.identifier.issn2676-4334
dc.identifier.urihttps://dx.doi.org/10.22111/ijfs.2015.1979
dc.identifier.urihttps://ijfs.usb.ac.ir/article_1979.html
dc.identifier.urihttps://iranjournals.nlai.ir/handle/123456789/330843
dc.description.abstractIn this paper, we introduce a Takagi-Sugeno (TS) fuzzy model which is derived from a typical Multi-Layer Perceptron Neural Network (MLP NN). At first, it is shown that the considered MLP NN can be interpreted as a variety of TS fuzzy model. It is discussed that the utilized Membership Function (MF) in such TS fuzzy model, despite its flexible structure, has some major restrictions. After modifying the MF, we introduce a TS fuzzy model whose MFs are tunable near and far from focal points, separately. To identify such TS fuzzy model, an incremental learning algorithm, based on an efficient space partitioning technique, is proposed. Through an illustrative example, the methodology of the learning algorithm is explained. Next, through two case studies: approximation of a nonlinear function for a sun sensor and identification of a pH neutralization process, the superiority of the introduced TS fuzzy model in comparison to some other TS fuzzy models and MLP NN is shown.en_US
dc.languageEnglish
dc.language.isoen_US
dc.publisherUniversity of Sistan and Baluchestanen_US
dc.relation.ispartofIranian Journal of Fuzzy Systemsen_US
dc.relation.isversionofhttps://dx.doi.org/10.22111/ijfs.2015.1979
dc.subjectTakagi-Sugeno fuzzy modelen_US
dc.subjectMulti layer perceptronen_US
dc.subjectTunable membership functionsen_US
dc.subjectNonlinear function approximationen_US
dc.subjectpH neutralization processen_US
dc.titleA TS Fuzzy Model Derived from a Typical Multi-Layer Perceptronen_US
dc.typeTexten_US
dc.typeResearch Paperen_US
dc.contributor.departmentSystem Engineering and Mechatronics Group, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iranen_US
dc.contributor.departmentControl and Intelligent Processing Center of Excellence, School of Electrical and Computer Engineering, University of Tehran, Tehran, Iranen_US
dc.contributor.departmentControl and Intelligent Processing Center of Excellence, School of Electrical and Computer Engineering, University of Tehran, Tehran, Iranen_US
dc.contributor.departmentSystem Engineering and Mechatronics Group, Faculty of New Sci- ences and Technologies, University of Tehran, Tehran, Iranen_US
dc.citation.volume12
dc.citation.issue2
dc.citation.spage1
dc.citation.epage21


فایل‌های این مورد

فایل‌هااندازهقالبمشاهده

فایلی با این مورد مرتبط نشده است.

این مورد در مجموعه‌های زیر وجود دارد:

نمایش مختصر رکورد