نمایش مختصر رکورد

dc.contributor.authorGhanbari, Rezaen_US
dc.contributor.authorMahdavi-Amiri, Nezamen_US
dc.contributor.authorYousefpour, Rohollahen_US
dc.date.accessioned1399-07-09T07:51:53Zfa_IR
dc.date.accessioned2020-09-30T07:51:53Z
dc.date.available1399-07-09T07:51:53Zfa_IR
dc.date.available2020-09-30T07:51:53Z
dc.date.issued2010-06-01en_US
dc.date.issued1389-03-11fa_IR
dc.date.submitted2008-10-05en_US
dc.date.submitted1387-07-14fa_IR
dc.identifier.citationGhanbari, Reza, Mahdavi-Amiri, Nezam, Yousefpour, Rohollah. (2010). Exact and approximate solutions of fuzzy LR linear systems: New algorithms using a least squares model and the ABS approach. Iranian Journal of Fuzzy Systems, 7(2), 1-18. doi: 10.22111/ijfs.2010.167en_US
dc.identifier.issn1735-0654
dc.identifier.issn2676-4334
dc.identifier.urihttps://dx.doi.org/10.22111/ijfs.2010.167
dc.identifier.urihttps://ijfs.usb.ac.ir/article_167.html
dc.identifier.urihttps://iranjournals.nlai.ir/handle/123456789/330421
dc.description.abstractWe present a methodology for characterization and an approach for computing the solutions of fuzzy linear systems with LR fuzzy variables. As solutions, notions of exact and approximate solutions are considered. We transform the fuzzy linear system into a corresponding linear crisp system and a constrained least squares problem. If the corresponding crisp system is incompatible, then the fuzzy LR system lacks exact solutions. We show that the fuzzy LR system has an exact solution if and only if the corresponding crisp system is compatible (has a solution) and the solution of the corresponding least squares problem is equal to zero. In this case, the exact solution is determined by the solutions of the two corresponding problems. On the other hand, if the corresponding crisp system is compatible and the optimal value of the corresponding constrained least squares problem is nonzero, then we characterize approximate solutions of the fuzzy system by solution of the least squares problem. Also, we characterize solutions by defining an appropriate membership function so that an exact solution is a fuzzy LR vector having the membership function value equal to one and, when an exact solution does not exist, an approximate solution is a fuzzy LR vector with a maximal membership function value. We propose a class of algorithms based on ABS algorithm for solving the LR fuzzy systems. The proposed algorithms can also be used to solve the extended dual fuzzy linear systems. Finally, we show that, when the system has more than one solution, the proposed algorithms are flexible enough to compute special solutions of interest. Several examples are worked out to demonstrate the various possible scenarios for the solutions of fuzzy LR linear systems.en_US
dc.languageEnglish
dc.language.isoen_US
dc.publisherUniversity of Sistan and Baluchestanen_US
dc.relation.ispartofIranian Journal of Fuzzy Systemsen_US
dc.relation.isversionofhttps://dx.doi.org/10.22111/ijfs.2010.167
dc.subjectFuzzy linear systemen_US
dc.subjectFuzzy LR solutionen_US
dc.subjectABS algorithmen_US
dc.subjectLeast squares approximationen_US
dc.titleExact and approximate solutions of fuzzy LR linear systems: New algorithms using a least squares model and the ABS approachen_US
dc.typeTexten_US
dc.typeResearch Paperen_US
dc.contributor.departmentDepartment of Mathematics, Ferdowsi University of Mashhad, Mashhad, Iranen_US
dc.contributor.departmentFaculty of Mathematical Sciences, Sharif University of Technology, Tehran, Iranen_US
dc.contributor.departmentDepartment of Mathematics, Mazandaran University, Babolsar, Iranen_US
dc.citation.volume7
dc.citation.issue2
dc.citation.spage1
dc.citation.epage18


فایل‌های این مورد

فایل‌هااندازهقالبمشاهده

فایلی با این مورد مرتبط نشده است.

این مورد در مجموعه‌های زیر وجود دارد:

نمایش مختصر رکورد