نمایش مختصر رکورد

dc.contributor.authorSaadati, R.en_US
dc.date.accessioned1399-07-09T07:47:09Zfa_IR
dc.date.accessioned2020-09-30T07:47:09Z
dc.date.available1399-07-09T07:47:09Zfa_IR
dc.date.available2020-09-30T07:47:09Z
dc.date.issued2015-04-01en_US
dc.date.issued1394-01-12fa_IR
dc.date.submitted2015-04-24en_US
dc.date.submitted1394-02-04fa_IR
dc.identifier.citationSaadati, R.. (2015). Positive-additive functional equations in non-Archimedean $C^*$-‎algebras. International Journal of Industrial Mathematics, 7(2), 179-185.en_US
dc.identifier.issn2008-5621
dc.identifier.issn2008-563X
dc.identifier.urihttp://ijim.srbiau.ac.ir/article_6544.html
dc.identifier.urihttps://iranjournals.nlai.ir/handle/123456789/328814
dc.description.abstract‎Hensel [K‎. ‎Hensel‎, ‎Deutsch‎. ‎Math‎. ‎Verein‎, ‎{6} (1897), ‎83-88.] discovered the $p$-adic number as a‎ ‎number theoretical analogue of power series in complex analysis‎. ‎Fix ‎a prime number $p$‎. ‎for any nonzero rational number $x$‎, ‎there‎ ‎exists a unique integer $n_x inmathbb{Z}$ such that $x = ‎frac{a}{b}p^{n_x}$‎, ‎where $a$ and $b$ are integers not divisible by ‎$p$‎. ‎Then $|x|_p‎ :‎= p^{-n_x}$ defines a non-Archimedean norm on‎ ‎$mathbb{Q}$‎. ‎The completion of $mathbb{Q}$ with respect to metric ‎$d(x‎, ‎y)=|x‎- ‎y|_p$‎, ‎which is denoted by $mathbb{Q}_p$‎, ‎is called‎ ‎{it $p$-adic number field}‎. ‎In fact‎, ‎$mathbb{Q}_p$ is the set of ‎all formal series $x = sum_{kgeq n_x}^{infty}a_{k}p^{k}$‎, ‎where ‎$|a_{k}| le p-1$ are integers‎. ‎The addition and multiplication‎ ‎between any two elements of $mathbb{Q}_p$ are defined naturally. ‎The norm $Big|sum_{kgeq n_x}^{infty}a_{k}p^{k}Big|_p =‎ ‎p^{-n_x}$ is a non-Archimedean norm on $mathbb{Q}_p$ and it makes‎ ‎$mathbb{Q}_p$ a locally compact field.‎ ‎In this paper‎, ‎we consider non-Archimedean $C^*$-algebras and‎, ‎using the fixed point method‎, ‎we provide an approximation of the positive-additive functional equations in non-Archimedean $C^*$-‎algebras.en_US
dc.format.extent290
dc.format.mimetypeapplication/pdf
dc.languageEnglish
dc.language.isoen_US
dc.publisherScience and Research Branch, Islamic Azad University, Tehran, Iran Website: ijim.srbiau.ac.ir Address: Science and Research Branch, Shohada Hesarak Blvd, Daneshgah Square, Sattari Highway, Tehran, Iran. Email: ijim@srbiau.ac.ir Tel:+98(44)32352053, +98(914)3897371. Fax:+98(44)32722660en_US
dc.publisherدانشگاه آزاد اسلامی واحد علوم و تحقیقات تهرانfa_IR
dc.relation.ispartofInternational Journal of Industrial Mathematicsen_US
dc.relation.ispartofمجله بین المللی ریاضیات صنعتیfa_IR
dc.subjectFunctional equationen_US
dc.subjectfixed pointen_US
dc.subject‎ ‎Positive-additive functional equationen_US
dc.subjectLinear mappingen_US
dc.subjectNon-Archimedean $C^*$-‎algebraen_US
dc.titlePositive-additive functional equations in non-Archimedean $C^*$-‎algebrasen_US
dc.typeTexten_US
dc.typeResearch Paperen_US
dc.contributor.departmentDepartment of Mathematics‎, ‎Iran University of Science and Technology‎, ‎Tehran,‎ ‎Iran‎.en_US
dc.citation.volume7
dc.citation.issue2
dc.citation.spage179
dc.citation.epage185


فایل‌های این مورد

Thumbnail

این مورد در مجموعه‌های زیر وجود دارد:

نمایش مختصر رکورد