| dc.contributor.author | Saadati, R. | en_US | 
| dc.date.accessioned | 1399-07-09T07:47:09Z | fa_IR | 
| dc.date.accessioned | 2020-09-30T07:47:09Z |  | 
| dc.date.available | 1399-07-09T07:47:09Z | fa_IR | 
| dc.date.available | 2020-09-30T07:47:09Z |  | 
| dc.date.issued | 2015-04-01 | en_US | 
| dc.date.issued | 1394-01-12 | fa_IR | 
| dc.date.submitted | 2015-04-24 | en_US | 
| dc.date.submitted | 1394-02-04 | fa_IR | 
| dc.identifier.citation | Saadati, R.. (2015). Positive-additive functional equations in non-Archimedean $C^*$-algebras. International Journal of Industrial Mathematics, 7(2), 179-185. | en_US | 
| dc.identifier.issn | 2008-5621 |  | 
| dc.identifier.issn | 2008-563X |  | 
| dc.identifier.uri | http://ijim.srbiau.ac.ir/article_6544.html |  | 
| dc.identifier.uri | https://iranjournals.nlai.ir/handle/123456789/328814 |  | 
| dc.description.abstract | Hensel [K. Hensel, Deutsch. Math. Verein, {6} (1897), 83-88.] discovered the $p$-adic number as a number theoretical analogue of power series in complex analysis. Fix a prime number $p$. for any nonzero rational number $x$, there exists a unique integer $n_x inmathbb{Z}$ such that $x = frac{a}{b}p^{n_x}$, where $a$ and $b$ are integers not divisible by $p$. Then $|x|_p := p^{-n_x}$ defines a non-Archimedean norm on $mathbb{Q}$. The completion of $mathbb{Q}$ with respect to metric $d(x, y)=|x- y|_p$, which is denoted by $mathbb{Q}_p$, is called {it $p$-adic number field}. In fact, $mathbb{Q}_p$ is the set of all formal series $x = sum_{kgeq n_x}^{infty}a_{k}p^{k}$, where $|a_{k}| le p-1$ are integers. The addition and multiplication between any two elements of $mathbb{Q}_p$ are defined naturally. The norm $Big|sum_{kgeq n_x}^{infty}a_{k}p^{k}Big|_p = p^{-n_x}$ is a non-Archimedean norm on $mathbb{Q}_p$ and it makes $mathbb{Q}_p$ a locally compact field. In this paper, we consider non-Archimedean $C^*$-algebras and, using the fixed point method, we provide an approximation of the positive-additive functional equations in non-Archimedean $C^*$-algebras. | en_US | 
| dc.format.extent | 290 |  | 
| dc.format.mimetype | application/pdf |  | 
| dc.language | English |  | 
| dc.language.iso | en_US |  | 
| dc.publisher | Science and Research Branch, Islamic Azad University, Tehran, Iran
Website: ijim.srbiau.ac.ir  
Address: Science and Research Branch, Shohada Hesarak Blvd, Daneshgah Square, Sattari Highway, Tehran, Iran.
Email: ijim@srbiau.ac.ir  
Tel:+98(44)32352053, +98(914)3897371.
Fax:+98(44)32722660 | en_US | 
| dc.publisher | دانشگاه آزاد اسلامی واحد علوم و تحقیقات تهران | fa_IR | 
| dc.relation.ispartof | International Journal of Industrial Mathematics | en_US | 
| dc.relation.ispartof | مجله بین المللی ریاضیات صنعتی | fa_IR | 
| dc.subject | Functional equation | en_US | 
| dc.subject | fixed point | en_US | 
| dc.subject |  Positive-additive functional equation | en_US | 
| dc.subject | Linear mapping | en_US | 
| dc.subject | Non-Archimedean $C^*$-algebra | en_US | 
| dc.title | Positive-additive functional equations in non-Archimedean $C^*$-algebras | en_US | 
| dc.type | Text | en_US | 
| dc.type | Research Paper | en_US | 
| dc.contributor.department | Department of  Mathematics, Iran University of Science and Technology, Tehran, Iran. | en_US | 
| dc.citation.volume | 7 |  | 
| dc.citation.issue | 2 |  | 
| dc.citation.spage | 179 |  | 
| dc.citation.epage | 185 |  |