نمایش مختصر رکورد

dc.contributor.authorRatnaningsih, Dewien_US
dc.date.accessioned1399-07-09T07:45:08Zfa_IR
dc.date.accessioned2020-09-30T07:45:08Z
dc.date.available1399-07-09T07:45:08Zfa_IR
dc.date.available2020-09-30T07:45:08Z
dc.date.issued2014-01-01en_US
dc.date.issued1392-10-11fa_IR
dc.date.submitted2016-04-15en_US
dc.date.submitted1395-01-27fa_IR
dc.identifier.citationRatnaningsih, Dewi. (2014). THE COMPARISON OF TWO METHOD NONPARAMETRIC APPROACH ON SMALL AREA ESTIMATION (CASE: APPROACH WITH KERNEL METHODS AND LOCAL POLYNOMIAL REGRESSION). International Journal of Mathematical Modelling & Computations, 4(2), 115-123.en_US
dc.identifier.issn2228-6225
dc.identifier.issn2228-6233
dc.identifier.urihttp://ijm2c.iauctb.ac.ir/article_521855.html
dc.identifier.urihttps://iranjournals.nlai.ir/handle/123456789/328103
dc.description.abstractSmall Area estimation is a technique used to estimate parameters of subpopulations with small sample sizes.  Small area estimation is needed  in obtaining information on a small area, such as sub-district or village.  Generally, in some cases, small area estimation uses parametric modeling.  But in fact, a lot of models have no linear relationship between the small area average and the covariate. This problem requires a non-parametric approach to solve, such asKernel approach and Local Polynomial Regression (LPR). The purpose of this study is comparing the results of small area estimation using Kernel approach and LPR. Data used in this study are generated by simulation results using R language . Simulation data obtained by generating function m (x) are linear and quadratic pattern. The criteria used to compare the results of the simulation are Absolute Relative Bias (ARB), Mean Square Error (MSE), Generalized Cross Validation (GCV), and risk factors. The simulation results showed: 1) Kernel gives smaller relative bias than LPR does on both  linear and quadratic data pattern. The relative bias obtained by Kernel tends to be more stable and consistent than the relative bias resulted by LPR, (2) the Kernel MSE is smaller than the LPR MSE either on linear or quadratic pattern in any combination treatment, (3) the value of GCV and the risk factors in Kernel are smaller than these in LPR in any combination of the simulated data patterns, (4) on non parametric data, for both linear data pattern and quadratic data pattern, Kernel methods provide better estimation compared to LPR.en_US
dc.format.extent198
dc.format.mimetypeapplication/pdf
dc.languageEnglish
dc.language.isoen_US
dc.publisherIslamic Azad University, Central tehran Branchen_US
dc.relation.ispartofInternational Journal of Mathematical Modelling & Computationsen_US
dc.titleTHE COMPARISON OF TWO METHOD NONPARAMETRIC APPROACH ON SMALL AREA ESTIMATION (CASE: APPROACH WITH KERNEL METHODS AND LOCAL POLYNOMIAL REGRESSION)en_US
dc.typeTexten_US
dc.contributor.departmentIndonesiaen_US
dc.citation.volume4
dc.citation.issue2
dc.citation.spage115
dc.citation.epage123


فایل‌های این مورد

Thumbnail

این مورد در مجموعه‌های زیر وجود دارد:

نمایش مختصر رکورد