نمایش مختصر رکورد

dc.contributor.authorSafari, Mehdien_US
dc.contributor.authorJoudaki, Jalalen_US
dc.date.accessioned1399-07-09T07:36:38Zfa_IR
dc.date.accessioned2020-09-30T07:36:38Z
dc.date.available1399-07-09T07:36:38Zfa_IR
dc.date.available2020-09-30T07:36:38Z
dc.date.issued2019-10-01en_US
dc.date.issued1398-07-09fa_IR
dc.date.submitted2019-02-23en_US
dc.date.submitted1397-12-04fa_IR
dc.identifier.citationSafari, Mehdi, Joudaki, Jalal. (2019). Coupled Eulerian-Lagrangian (CEL) Modeling of Material Flow in Dissimilar Friction Stir Welding of Aluminum Alloys. Iranian Journal of Materials Forming, 6(2), 10-19. doi: 10.22099/ijmf.2019.5430en_US
dc.identifier.issn2383-0042
dc.identifier.urihttps://dx.doi.org/10.22099/ijmf.2019.5430
dc.identifier.urihttp://ijmf.shirazu.ac.ir/article_5430.html
dc.identifier.urihttps://iranjournals.nlai.ir/handle/123456789/325314
dc.description.abstractIn this work, the finite element simulation of dissimilar friction stir welding process is investigated. The welded materials are AA 6061-T6 and AA 7075-T6 aluminum alloys. For this purpose, a 3D coupled thermo-mechanical finite element model is developed according to the Coupled Eulerian-Lagrangian (CEL) method. The CEL method has the advantages of both Lagrangian and Eulerian approaches, which means it can simultaneously solve the singularity in the large deformation problems and describe the physical boundary of the material accurately. In this paper, the effects of the position of the harder material (AA 7075-T6 aluminum alloy) and the tool pin profile on the temperature distribution and material flow in the weld metal and heat affected zone (HAZ) are investigated. The results show that the material velocity around the FSW tool is found to be higher using a grooved pin profile. Moreover, placing the harder material at the advancing side results in slightly lower process temperatures in comparison to the estimated temperature when the material is placed at the retreating side for all types of tool profiles. It has been proved that if the AA 7075-T6 aluminum alloy is at the advancing side, mixing happens in a thin layer below the tool shoulder, and the penetration of the harder material into the retreating side is found to be limited. In addition, good agreement between the temperature distribution obtained from the experimental measurements and numerical simulations is achieved and the accuracy of the numerical model is confirmed.en_US
dc.format.extent1488
dc.format.mimetypeapplication/pdf
dc.languageEnglish
dc.language.isoen_US
dc.publisherShiraz Universityen_US
dc.relation.ispartofIranian Journal of Materials Formingen_US
dc.relation.isversionofhttps://dx.doi.org/10.22099/ijmf.2019.5430
dc.subjectCoupled Eulerian-Lagrangian analysisen_US
dc.subjectCELen_US
dc.subjectDissimilar friction stir weldingen_US
dc.subjectNumerical modelingen_US
dc.subjectTool pin profileen_US
dc.titleCoupled Eulerian-Lagrangian (CEL) Modeling of Material Flow in Dissimilar Friction Stir Welding of Aluminum Alloysen_US
dc.typeTexten_US
dc.contributor.departmentArak University of Technologyen_US
dc.contributor.departmentDepartment of Mechanical Engineering, Arak University of Technology, Arak, Iranen_US
dc.citation.volume6
dc.citation.issue2
dc.citation.spage10
dc.citation.epage19


فایل‌های این مورد

Thumbnail

این مورد در مجموعه‌های زیر وجود دارد:

نمایش مختصر رکورد