نمایش مختصر رکورد

dc.contributor.authorPourreza, Rezaen_US
dc.contributor.authorPourreza, Hamidrezaen_US
dc.contributor.authorBanaee, Toukaen_US
dc.contributor.authorDaneshvar, Raminen_US
dc.date.accessioned1399-07-09T07:33:05Zfa_IR
dc.date.accessioned2020-09-30T07:33:05Z
dc.date.available1399-07-09T07:33:05Zfa_IR
dc.date.available2020-09-30T07:33:05Z
dc.date.issued2010-09-01en_US
dc.date.issued1389-06-10fa_IR
dc.date.submitted2010-02-28en_US
dc.date.submitted1388-12-09fa_IR
dc.identifier.citationPourreza, Reza, Pourreza, Hamidreza, Banaee, Touka, Daneshvar, Ramin. (2010). Detection of Blood Vessels in Color Fundus Images using a Local Radon Transform. Iranian Journal of Medical Physics, 7(3), 1-8. doi: 10.22038/ijmp.2010.7247en_US
dc.identifier.issn2345-3672
dc.identifier.urihttps://dx.doi.org/10.22038/ijmp.2010.7247
dc.identifier.urihttp://ijmp.mums.ac.ir/article_7247.html
dc.identifier.urihttps://iranjournals.nlai.ir/handle/123456789/324172
dc.description.abstract<strong>Introduction:</strong> This paper addresses a method for automatic detection of blood vessels in color fundus images which utilizes two main tools: image partitioning and local Radon transform. <br/><strong>Material and Methods:</strong> The input images are firstly divided into overlapping windows and then the Radon transform is applied to each. The maximum of the Radon transform in each window corresponds to the probable available sub-vessel. To verify the detected sub-vessel, the maximum is compared with a predefined threshold. The verified sub-vessels are reconstructed using the Radon transform information. All detected and reconstructed sub-vessels are finally combined to make the final vessel tree. <br/><strong>Results:</strong> The algorithm's performance was evaluated numerically by applying it to 40 images of DRIVE database, a standard retinal image database. The vessels were extracted manually by two physicians. This database was used to test and compare the available and proposed algorithms for vessel detection in color fundus images. By comparing the output of the algorithm with the manual results, the two parameters TPR and FPR were calculated for each image and the average of TPRs and FPRs were used to plot the ROC curve. <br/><strong>Discussion and Conclusion:</strong> Comparison of the ROC curve of this algorithm with other algorithms demonstrated the high achieved accuracy. Beside the high accuracy, the Radon transform which is integral-based makes the algorithm robust against noise.en_US
dc.format.extent642
dc.format.mimetypeapplication/pdf
dc.languageEnglish
dc.language.isoen_US
dc.publisherMashhad University of Medical Sciencesen_US
dc.relation.ispartofIranian Journal of Medical Physicsen_US
dc.relation.isversionofhttps://dx.doi.org/10.22038/ijmp.2010.7247
dc.subjectDRIVEen_US
dc.subjectRadon Transformen_US
dc.subjectRetinaen_US
dc.subjectVessel Detectionen_US
dc.subjectLaser and Opticsen_US
dc.subjectMedical Imaging & Image Processingen_US
dc.subjectMedical Physicsen_US
dc.titleDetection of Blood Vessels in Color Fundus Images using a Local Radon Transformen_US
dc.typeTexten_US
dc.typeOriginal Paperen_US
dc.contributor.departmentPhD Student, Computer Engineering Dept., Ferdowsi University of Mashhad, Mashhad, Iran.en_US
dc.contributor.departmentAssociate Professor, Computer Engineering Dept., Ferdowsi University of Mashhad, Mashhad, Iran.en_US
dc.contributor.departmentAssistant Professor, Ophthalmic Research Center, Khatam-Al-Anbia Hospital, Mashhad University of Medical Sciences, Mashhad, Iran.en_US
dc.contributor.departmentAssistant Professor, Ophthalmic Research Center, Khatam-Al-Anbia Hospital, Mashhad University of Medical Sciences, Mashhad, Iran.en_US
dc.citation.volume7
dc.citation.issue3
dc.citation.spage1
dc.citation.epage8


فایل‌های این مورد

Thumbnail

این مورد در مجموعه‌های زیر وجود دارد:

نمایش مختصر رکورد