| dc.contributor.author | Saiedinezhad, Somayeh | en_US |
| dc.date.accessioned | 1399-07-09T07:28:50Z | fa_IR |
| dc.date.accessioned | 2020-09-30T07:28:50Z | |
| dc.date.available | 1399-07-09T07:28:50Z | fa_IR |
| dc.date.available | 2020-09-30T07:28:50Z | |
| dc.date.issued | 2016-06-01 | en_US |
| dc.date.issued | 1395-03-12 | fa_IR |
| dc.date.submitted | 2015-12-05 | en_US |
| dc.date.submitted | 1394-09-14 | fa_IR |
| dc.identifier.citation | Saiedinezhad, Somayeh. (2016). Some functional inequalities in variable exponent spaces with a more generalization of uniform continuity condition. International Journal of Nonlinear Analysis and Applications, 7(2), 29-38. doi: 10.22075/ijnaa.2016.439 | en_US |
| dc.identifier.issn | 2008-6822 | |
| dc.identifier.uri | https://dx.doi.org/10.22075/ijnaa.2016.439 | |
| dc.identifier.uri | https://ijnaa.semnan.ac.ir/article_439.html | |
| dc.identifier.uri | https://iranjournals.nlai.ir/handle/123456789/322735 | |
| dc.description.abstract | Some functional inequalities in variable exponent Lebesgue spaces are presented. The bi-weighted modular inequality with variable exponent $p(.)$ for the Hardy operator restricted to non- increasing function which is<br />$$<br />int_0^infty (frac{1}{x}int_0^x f(t)dt)^{p(x)}v(x)dxleq<br />Cint_0^infty f(x)^{p(x)}u(x)dx,<br />$$<br /> is studied. We show that the exponent $p(.)$ for which these modular inequalities hold must have constant oscillation. Also we study the boundedness of integral operator $Tf(x)=int K(x,y) f(x)dy$ on $L^{p(.)}$ when the variable exponent $p(.)$ satisfies some uniform continuity condition that is named $beta$-controller condition and so multiple interesting results which can be seen as a generalization of the same classical results in the constant exponent case, derived. | en_US |
| dc.format.extent | 375 | |
| dc.format.mimetype | application/pdf | |
| dc.language | English | |
| dc.language.iso | en_US | |
| dc.publisher | Semnan University | en_US |
| dc.relation.ispartof | International Journal of Nonlinear Analysis and Applications | en_US |
| dc.relation.isversionof | https://dx.doi.org/10.22075/ijnaa.2016.439 | |
| dc.subject | Hardy type inequality | en_US |
| dc.subject | Variable exponent Lebesgue space | en_US |
| dc.subject | Modular type inequality. | en_US |
| dc.title | Some functional inequalities in variable exponent spaces with a more generalization of uniform continuity condition | en_US |
| dc.type | Text | en_US |
| dc.type | Research Paper | en_US |
| dc.contributor.department | Assistant professor of Iran University of Science and technology | en_US |
| dc.citation.volume | 7 | |
| dc.citation.issue | 2 | |
| dc.citation.spage | 29 | |
| dc.citation.epage | 38 | |