نمایش مختصر رکورد

dc.contributor.authorRassias, Michael Th.en_US
dc.contributor.authorYang, Bichengen_US
dc.date.accessioned1399-07-09T07:28:49Zfa_IR
dc.date.accessioned2020-09-30T07:28:49Z
dc.date.available1399-07-09T07:28:49Zfa_IR
dc.date.available2020-09-30T07:28:49Z
dc.date.issued2016-06-01en_US
dc.date.issued1395-03-12fa_IR
dc.date.submitted2015-05-11en_US
dc.date.submitted1394-02-21fa_IR
dc.identifier.citationRassias, Michael Th., Yang, Bicheng. (2016). A more accurate half-discrete Hardy-Hilbert-type inequality with the best possible constant factor related to the extended Riemann-Zeta function. International Journal of Nonlinear Analysis and Applications, 7(2), 1-27. doi: 10.22075/ijnaa.2016.375en_US
dc.identifier.issn2008-6822
dc.identifier.urihttps://dx.doi.org/10.22075/ijnaa.2016.375
dc.identifier.urihttps://ijnaa.semnan.ac.ir/article_375.html
dc.identifier.urihttps://iranjournals.nlai.ir/handle/123456789/322734
dc.description.abstractBy the method of weight coefficients, techniques of real analysis and Hermite-Hadamard's inequality, a half-discrete Hardy-Hilbert-type inequality related to the kernel of the hyperbolic cosecant function with the best possible constant factor expressed in terms of the extended Riemann-zeta function is proved. The more accurate equivalent forms, the operator expressions with the norm, the reverses and some particular cases are also considered.en_US
dc.format.extent527
dc.format.mimetypeapplication/pdf
dc.languageEnglish
dc.language.isoen_US
dc.publisherSemnan Universityen_US
dc.relation.ispartofInternational Journal of Nonlinear Analysis and Applicationsen_US
dc.relation.isversionofhttps://dx.doi.org/10.22075/ijnaa.2016.375
dc.subjectHardy-Hilbert-type inequalityen_US
dc.subjectextended Riemann-zeta functionen_US
dc.subjectHurwitz zeta functionen_US
dc.subjectGamma functionen_US
dc.subjectweight functionen_US
dc.subjectequivalent formen_US
dc.subjectoperatoren_US
dc.titleA more accurate half-discrete Hardy-Hilbert-type inequality with the best possible constant factor related to the extended Riemann-Zeta functionen_US
dc.typeTexten_US
dc.typeResearch Paperen_US
dc.contributor.departmentInstitute of Mathematics, University of Zurich, CH-8057, Zurich, Switzerland & Institute for Advanced Study, Program in Interdisciplinary Studies, 1 Einstein Dr, Princeton, NJ 08540, USAen_US
dc.contributor.departmentDepartment of Mathematics, Guangdong University of Education, Guangzhou, Guangdong 510303, P. R. Chinaen_US
dc.citation.volume7
dc.citation.issue2
dc.citation.spage1
dc.citation.epage27


فایل‌های این مورد

Thumbnail

این مورد در مجموعه‌های زیر وجود دارد:

نمایش مختصر رکورد