| dc.contributor.author | Kosmala, W.A.J. | en_US |
| dc.date.accessioned | 1399-07-09T07:28:31Z | fa_IR |
| dc.date.accessioned | 2020-09-30T07:28:31Z | |
| dc.date.available | 1399-07-09T07:28:31Z | fa_IR |
| dc.date.available | 2020-09-30T07:28:31Z | |
| dc.date.issued | 2011-01-01 | en_US |
| dc.date.issued | 1389-10-11 | fa_IR |
| dc.date.submitted | 2010-01-07 | en_US |
| dc.date.submitted | 1388-10-17 | fa_IR |
| dc.identifier.citation | Kosmala, W.A.J.. (2011). A period 5 difference equation. International Journal of Nonlinear Analysis and Applications, 2(1), 82-84. doi: 10.22075/ijnaa.2011.107 | en_US |
| dc.identifier.issn | 2008-6822 | |
| dc.identifier.uri | https://dx.doi.org/10.22075/ijnaa.2011.107 | |
| dc.identifier.uri | https://ijnaa.semnan.ac.ir/article_107.html | |
| dc.identifier.uri | https://iranjournals.nlai.ir/handle/123456789/322628 | |
| dc.description.abstract | The main goal of this note is to introduce another second-order difference<br />equation where every nontrivial solution is of minimal period 5, namely<br />the difference equation:<br />xn+1 =<br />1 + xn−1<br />xnxn−1 − 1, n = 1, 2, 3, . . .<br />with initial conditions x0 and x1 any real numbers such that x0x1 6= 1. | en_US |
| dc.format.extent | 140 | |
| dc.format.mimetype | application/pdf | |
| dc.language | English | |
| dc.language.iso | en_US | |
| dc.publisher | Semnan University | en_US |
| dc.relation.ispartof | International Journal of Nonlinear Analysis and Applications | en_US |
| dc.relation.isversionof | https://dx.doi.org/10.22075/ijnaa.2011.107 | |
| dc.subject | difference equation | en_US |
| dc.subject | periodicity | en_US |
| dc.subject | equilibrium points | en_US |
| dc.subject | convergence | en_US |
| dc.title | A period 5 difference equation | en_US |
| dc.type | Text | en_US |
| dc.contributor.department | Department of Math. Sci., Appalachian State University, Boone, NC 28608, USA | en_US |
| dc.citation.volume | 2 | |
| dc.citation.issue | 1 | |
| dc.citation.spage | 82 | |
| dc.citation.epage | 84 | |