| dc.contributor.author | Zireh, A. | en_US |
| dc.date.accessioned | 1399-07-09T07:28:30Z | fa_IR |
| dc.date.accessioned | 2020-09-30T07:28:30Z | |
| dc.date.available | 1399-07-09T07:28:30Z | fa_IR |
| dc.date.available | 2020-09-30T07:28:30Z | |
| dc.date.issued | 2011-06-01 | en_US |
| dc.date.issued | 1390-03-11 | fa_IR |
| dc.date.submitted | 2010-01-06 | en_US |
| dc.date.submitted | 1388-10-16 | fa_IR |
| dc.identifier.citation | Zireh, A.. (2011). Maximum modulus of derivatives of a polynomial. International Journal of Nonlinear Analysis and Applications, 2(2), 109-113. doi: 10.22075/ijnaa.2011.106 | en_US |
| dc.identifier.issn | 2008-6822 | |
| dc.identifier.uri | https://dx.doi.org/10.22075/ijnaa.2011.106 | |
| dc.identifier.uri | https://ijnaa.semnan.ac.ir/article_106.html | |
| dc.identifier.uri | https://iranjournals.nlai.ir/handle/123456789/322618 | |
| dc.description.abstract | For an arbitrary entire function f(z), let M(f;R) = maxjzj=R jf(z)j<br />and m(f; r) = minjzj=r jf(z)j. If P(z) is a polynomial of degree n having no zeros<br />in jzj < k, k 1, then for 0 r k, it is proved by Aziz et al. that<br />M(P0; ) n<br /> +k f( +k<br />k+r )n[1 k(k )(nja0jkja1j)n<br />( 2+k2)nja0j+2k2 ja1j ( r<br />k+ )( k+r<br />k+ )n1]M(P; r)<br />[ (nja0j +k2ja1j)(r+k)<br />( 2+k2)nja0j+2k2 ja1j [(( +k<br />r+k )n 1) n( r)]]m(P; k)g:<br />In this paper, we obtain a re nement of the above inequality. Moreover, we obtain<br />a generalization of above inequality for M(P0;R), where R k. | en_US |
| dc.format.extent | 301 | |
| dc.format.mimetype | application/pdf | |
| dc.language | English | |
| dc.language.iso | en_US | |
| dc.publisher | Semnan University | en_US |
| dc.relation.ispartof | International Journal of Nonlinear Analysis and Applications | en_US |
| dc.relation.isversionof | https://dx.doi.org/10.22075/ijnaa.2011.106 | |
| dc.subject | Polynomial | en_US |
| dc.subject | inequality | en_US |
| dc.subject | Maximum modulus | en_US |
| dc.subject | Restricted Zeros | en_US |
| dc.title | Maximum modulus of derivatives of a polynomial | en_US |
| dc.type | Text | en_US |
| dc.contributor.department | Department of Mathematics, Shahrood University of Technology, Shahrood,
Iran. | en_US |
| dc.citation.volume | 2 | |
| dc.citation.issue | 2 | |
| dc.citation.spage | 109 | |
| dc.citation.epage | 113 | |