نمایش مختصر رکورد

dc.contributor.authorHashemi, S.Mehdien_US
dc.contributor.authorAlmasi, Mehrdaden_US
dc.contributor.authorEbrazi, Roozbehen_US
dc.contributor.authorJahanshahi, Mohsenen_US
dc.date.accessioned1399-07-09T06:45:09Zfa_IR
dc.date.accessioned2020-09-30T06:45:09Z
dc.date.available1399-07-09T06:45:09Zfa_IR
dc.date.available2020-09-30T06:45:09Z
dc.date.issued2012-09-01en_US
dc.date.issued1391-06-11fa_IR
dc.date.submitted2015-04-13en_US
dc.date.submitted1394-01-24fa_IR
dc.identifier.citationHashemi, S.Mehdi, Almasi, Mehrdad, Ebrazi, Roozbeh, Jahanshahi, Mohsen. (2012). Predicting the Next State of Traffic by Data Mining Classification Techniques. International Journal of Smart Electrical Engineering, 01(03), 181-193.en_US
dc.identifier.issn2251-9246
dc.identifier.issn2345-6221
dc.identifier.urihttp://ijsee.iauctb.ac.ir/article_510084.html
dc.identifier.urihttps://iranjournals.nlai.ir/handle/123456789/308627
dc.description.abstractTraffic prediction systems can play an essential role in intelligent transportation systems (ITS). Prediction and patterns comprehensibility of traffic characteristic parameters such as average speed, flow, and travel time could be beneficiary both in advanced traveler information systems (ATIS) and in ITS traffic control systems. However, due to their complex nonlinear patterns, these systems are burdensome. In this paper, we have applied some supervised data mining techniques (i.e. Classification Tree, Random Forest, Naïve Bayesian and CN2) to predict the next state of Traffic by a categorical traffic variable (level of service (LOS)) in different short-time intervals and also produce simple and easy handling if-then rules to reveal road facility characteristic. The analytical results show prediction accuracy of 80% on average by using methodsen_US
dc.format.extent1385
dc.format.mimetypeapplication/pdf
dc.languageEnglish
dc.language.isoen_US
dc.publisherIslamic Azad University,Central Tehran Branchen_US
dc.relation.ispartofInternational Journal of Smart Electrical Engineeringen_US
dc.subjecttraffic predictionen_US
dc.subjectLevel of Service Predictionen_US
dc.subjectData miningen_US
dc.subjectNaïve Bayesianen_US
dc.subjectRandom foresten_US
dc.subjectClassification treeen_US
dc.subjectCN2en_US
dc.titlePredicting the Next State of Traffic by Data Mining Classification Techniquesen_US
dc.typeTexten_US
dc.contributor.departmentDepartment of Mathematical and Computer Science, Amirkabir University of Technology, Tehran, Iranen_US
dc.contributor.departmentDepartment of Computer Engineering, Isfahan University of Technology, Isfahan, Iran.en_US
dc.contributor.departmentDepartment of Mathematical and Computer Science, Amirkabir University of Technology, Tehran, Iranen_US
dc.contributor.departmentYoung Researchers and Elite club, Central Tehran Branch, Islamic Azad University, Tehran, Iran.en_US
dc.citation.volume01
dc.citation.issue03
dc.citation.spage181
dc.citation.epage193


فایل‌های این مورد

Thumbnail

این مورد در مجموعه‌های زیر وجود دارد:

نمایش مختصر رکورد