نمایش مختصر رکورد

dc.contributor.authorBeigi, S.en_US
dc.contributor.authorAmin Naseri, M.R.en_US
dc.date.accessioned1399-07-09T06:04:12Zfa_IR
dc.date.accessioned2020-09-30T06:04:12Z
dc.date.available1399-07-09T06:04:12Zfa_IR
dc.date.available2020-09-30T06:04:12Z
dc.date.issued2020-04-01en_US
dc.date.issued1399-01-13fa_IR
dc.date.submitted2018-10-10en_US
dc.date.submitted1397-07-18fa_IR
dc.identifier.citationBeigi, S., Amin Naseri, M.R.. (2020). Credit Card Fraud Detection using Data mining and Statistical Methods. Journal of AI and Data Mining, 8(2), 149-160. doi: 10.22044/jadm.2019.7506.1894en_US
dc.identifier.issn2322-5211
dc.identifier.issn2322-4444
dc.identifier.urihttps://dx.doi.org/10.22044/jadm.2019.7506.1894
dc.identifier.urihttp://jad.shahroodut.ac.ir/article_1654.html
dc.identifier.urihttps://iranjournals.nlai.ir/handle/123456789/294860
dc.description.abstractDue to today's advancement in technology and businesses, fraud detection has become a critical component of financial transactions. Considering vast amounts of data in large datasets, it becomes more difficult to detect fraud transactions manually.<br /> In this research, we propose a combined method using both data mining and statistical tasks, utilizing feature selection, resampling and cost-sensitive learning for credit card fraud detection. In the first step, useful features are identified using genetic algorithm. Next, the optimal resampling strategy is determined based on the design of experiments (DOE) and response surface methodologies. Finally, the cost sensitive C4.5 algorithm is used as the base learner in the Adaboost algorithm.<br /> Using a real-time data set, results show that applying the proposed method significantly reduces the misclassification cost by at least 14% compared with Decision tree, Naïve bayes, Bayesian Network, Neural network and Artificial immune system.en_US
dc.format.extent1277
dc.format.mimetypeapplication/pdf
dc.languageEnglish
dc.language.isoen_US
dc.publisherShahrood University of Technologyen_US
dc.relation.ispartofJournal of AI and Data Miningen_US
dc.relation.isversionofhttps://dx.doi.org/10.22044/jadm.2019.7506.1894
dc.subjectfraud detectionen_US
dc.subjectCredit cardsen_US
dc.subjectFeature Selectionen_US
dc.subjectResamplingen_US
dc.subjectcost sensitive learningen_US
dc.subjectJ.10.3. Financialen_US
dc.titleCredit Card Fraud Detection using Data mining and Statistical Methodsen_US
dc.typeTexten_US
dc.typeResearch/Original/Regular Articleen_US
dc.contributor.departmentFaculty of Industrial and Systems Engineering, Tarbiat Modares University, Tehran, Iran.en_US
dc.contributor.departmentIndustrial Engineering Department, Faculty of basic science and Engineering, Kosar university of Bojnord, Bojnord, Iran.en_US
dc.citation.volume8
dc.citation.issue2
dc.citation.spage149
dc.citation.epage160


فایل‌های این مورد

Thumbnail

این مورد در مجموعه‌های زیر وجود دارد:

نمایش مختصر رکورد