نمایش مختصر رکورد

dc.contributor.authorAhmadi Tameh, A.en_US
dc.contributor.authorNassiri, M.en_US
dc.contributor.authorMansoorizadeh, M.en_US
dc.date.accessioned1399-07-09T06:03:58Zfa_IR
dc.date.accessioned2020-09-30T06:03:58Z
dc.date.available1399-07-09T06:03:58Zfa_IR
dc.date.available2020-09-30T06:03:58Z
dc.date.issued2019-01-01en_US
dc.date.issued1397-10-11fa_IR
dc.date.submitted2016-11-08en_US
dc.date.submitted1395-08-18fa_IR
dc.identifier.citationAhmadi Tameh, A., Nassiri, M., Mansoorizadeh, M.. (2019). Automatic Construction of Persian ICT WordNet using Princeton WordNet. Journal of AI and Data Mining, 7(1), 109-119. doi: 10.22044/jadm.2018.4966.1601en_US
dc.identifier.issn2322-5211
dc.identifier.issn2322-4444
dc.identifier.urihttps://dx.doi.org/10.22044/jadm.2018.4966.1601
dc.identifier.urihttp://jad.shahroodut.ac.ir/article_1182.html
dc.identifier.urihttps://iranjournals.nlai.ir/handle/123456789/294784
dc.description.abstractWordNet is a large lexical database of English language, in which, nouns, verbs, adjectives, and adverbs are grouped into sets of cognitive synonyms (synsets). Each synset expresses a distinct concept. Synsets are interlinked by both semantic and lexical relations. WordNet is essentially used for word sense disambiguation, information retrieval, and text translation. In this paper, we propose several automatic methods to extract Information and Communication Technology (ICT)-related data from Princeton WordNet. We, then, add these extracted data to our Persian WordNet. The advantage of automated methods is reducing the interference of human factors and accelerating the development of our bilingual ICT WordNet. <br /> In our first proposed method, based on a small subset of ICT words, we use the definition of each synset to decide whether that synset is ICT. The second mechanism is to extract synsets which are in a semantic relation with ICT synsets. We also use two similarity criteria, namely LCS and S3M, to measure the similarity between a synset definition in WordNet and definition of any word in Microsoft dictionary. Our last method is to verify the coordinate of ICT synsets. Results show that our proposed mechanisms are able to extract ICT data from Princeton WordNet at a good level of accuracy.en_US
dc.format.extent1162
dc.format.mimetypeapplication/pdf
dc.languageEnglish
dc.language.isoen_US
dc.publisherShahrood University of Technologyen_US
dc.relation.ispartofJournal of AI and Data Miningen_US
dc.relation.isversionofhttps://dx.doi.org/10.22044/jadm.2018.4966.1601
dc.subjectWordNeten_US
dc.subjectsemantic relationen_US
dc.subjectsynseten_US
dc.subjectpart of speechen_US
dc.subjectInformation and Communication Technologyen_US
dc.subjectDocument and Text Processingen_US
dc.titleAutomatic Construction of Persian ICT WordNet using Princeton WordNeten_US
dc.typeTexten_US
dc.typeResearch/Original/Regular Articleen_US
dc.contributor.departmentComputer Department, Faculty of Engineering, Bu-Ali Sina University, Hamedan, Iran.en_US
dc.contributor.departmentComputer Department, Faculty of Engineering, Bu-Ali Sina University, Hamedan, Iran.en_US
dc.contributor.departmentComputer Department, Faculty of Engineering, Bu-Ali Sina University, Hamedan, Iran.en_US
dc.citation.volume7
dc.citation.issue1
dc.citation.spage109
dc.citation.epage119
nlai.contributor.orcid0000-0002-7131-1047


فایل‌های این مورد

Thumbnail

این مورد در مجموعه‌های زیر وجود دارد:

نمایش مختصر رکورد