| dc.contributor.author | Naghipour, A. | en_US |
| dc.date.accessioned | 1399-07-09T05:44:21Z | fa_IR |
| dc.date.accessioned | 2020-09-30T05:44:21Z | |
| dc.date.available | 1399-07-09T05:44:21Z | fa_IR |
| dc.date.available | 2020-09-30T05:44:21Z | |
| dc.date.issued | 2017-01-01 | en_US |
| dc.date.issued | 1395-10-12 | fa_IR |
| dc.date.submitted | 2016-12-04 | en_US |
| dc.date.submitted | 1395-09-14 | fa_IR |
| dc.identifier.citation | Naghipour, A.. (2017). THE ZERO-DIVISOR GRAPH OF A MODULE. Journal of Algebraic Systems, 4(2), 155-171. doi: 10.22044/jas.2017.858 | en_US |
| dc.identifier.issn | 2345-5128 | |
| dc.identifier.issn | 2345-511X | |
| dc.identifier.uri | https://dx.doi.org/10.22044/jas.2017.858 | |
| dc.identifier.uri | http://jas.shahroodut.ac.ir/article_858.html | |
| dc.identifier.uri | https://iranjournals.nlai.ir/handle/123456789/288017 | |
| dc.description.abstract | Let R be a commutative ring with identity and M an R-module. In this paper, we associate a graph to M, say<br />Γ(RM), such that when M=R, Γ(<sub>R</sub>M) coincide with the zero-divisor graph of R. Many well-known results by D.F. Anderson and P.S. Livingston have been generalized for Γ(RM). We Will show that Γ(<sub>R</sub>M) is connected with<br />diam Γ(RM)≤ 3 and if Γ(RM) contains a cycle, then Γ(RM)≤4. We will also show that Γ(RM)=Ø if and only if M is a<br />prime module. Among other results, it is shown that for a reduced module M satisfying DCC on cyclic submodules,<br />gr (Γ(RM))=∞ if and only if Γ(RM) is a star graph. Finally, we study the zero-divisor graph of free<br />R-modules. | en_US |
| dc.format.extent | 136 | |
| dc.format.mimetype | application/pdf | |
| dc.language | English | |
| dc.language.iso | en_US | |
| dc.publisher | Shahrood University of Technology | en_US |
| dc.relation.ispartof | Journal of Algebraic Systems | en_US |
| dc.relation.isversionof | https://dx.doi.org/10.22044/jas.2017.858 | |
| dc.subject | Annilhilator | en_US |
| dc.subject | diameter | en_US |
| dc.subject | girth | en_US |
| dc.subject | reduced module | en_US |
| dc.subject | zero-divisor graph | en_US |
| dc.title | THE ZERO-DIVISOR GRAPH OF A MODULE | en_US |
| dc.type | Text | en_US |
| dc.type | Original Manuscript | en_US |
| dc.contributor.department | Department of Mathematics, Shahrekord University, P.O. Box 115, Shahrekord,
Iran. | en_US |
| dc.citation.volume | 4 | |
| dc.citation.issue | 2 | |
| dc.citation.spage | 155 | |
| dc.citation.epage | 171 | |
| nlai.contributor.orcid | 0000-0002-7178-6173 | |