نمایش مختصر رکورد

dc.contributor.authorEslami-Farsani, Rezaen_US
dc.contributor.authorKhosravi, Hameden_US
dc.date.accessioned1399-07-09T05:38:32Zfa_IR
dc.date.accessioned2020-09-30T05:38:32Z
dc.date.available1399-07-09T05:38:32Zfa_IR
dc.date.available2020-09-30T05:38:32Z
dc.date.issued2017-08-01en_US
dc.date.issued1396-05-10fa_IR
dc.date.submitted2016-04-08en_US
dc.date.submitted1395-01-20fa_IR
dc.identifier.citationEslami-Farsani, Reza, Khosravi, Hamed. (2017). On the flexural properties of multiscale nanosilica/E-glass/epoxy anisogrid-stiffened composite panels. Journal of Computational & Applied Research in Mechanical Engineering (JCARME), 7(1), 99-108. doi: 10.22061/jcarme.2017.638en_US
dc.identifier.issn2228-7922
dc.identifier.issn2251-6549
dc.identifier.urihttps://dx.doi.org/10.22061/jcarme.2017.638
dc.identifier.urihttp://jcarme.sru.ac.ir/article_638.html
dc.identifier.urihttps://iranjournals.nlai.ir/handle/123456789/286034
dc.description.abstractIn the present study, multiscale nanosilica/E-glass/epoxy anisogrid composite panels were investigated for flexural properties as a function of nanosilica loading in the matrix (0, 1, 3 and 5 wt.%). The surface of the silica nanoparticles was firstly modified with 3-glycidoxypropyltrimethoxysilane (3-GPTS). The fourier transform infrared (FTIR) spectroscopy revealed that the organic functional groups of the silane were successfully grafted on the surface of the nanoparticles. It was illustrated that flexural properties of the composite panel loaded from the skin side can be significantly enhanced by incorporating silica nanoparticles. The use of 3 wt.% nanosilica was the most effective in increasing the load bearing capacity and energy absorption value, while the specimen containing 5 wt.% nanosilica demonstrated the highest flexural stiffness. From the results obtained for the anisogrid panels loaded from the skin side, it was found that these structures displayed excellent damage resistance which is represented by their energy absorption capability. Moreover, a significant portion of energy absorbed after the primary failure at the peak load. Finally, the results correlated well with the observation of field emission scanning electron microscopy (FESEM) micrographs where the nanocomposite panels exhibited higher degree of fiber-matrix interfacial strength and also enhanced matrix characteristics, imparted by the incorporation of surface modified silica nanoparticles.en_US
dc.format.extent530
dc.format.mimetypeapplication/pdf
dc.languageEnglish
dc.language.isoen_US
dc.publisherShahid Rajaee Teacher Training University (SRTTU)en_US
dc.relation.ispartofJournal of Computational & Applied Research in Mechanical Engineering (JCARME)en_US
dc.relation.isversionofhttps://dx.doi.org/10.22061/jcarme.2017.638
dc.subjectAnisogrid-stiffened composite structuresen_US
dc.subjectMultiscale compositesen_US
dc.subjectSilica nanoparticlesen_US
dc.subjectSurface Modificationen_US
dc.subject3-point bending responseen_US
dc.subjectEnergy absorptionen_US
dc.subjectComposite Materialsen_US
dc.titleOn the flexural properties of multiscale nanosilica/E-glass/epoxy anisogrid-stiffened composite panelsen_US
dc.typeTexten_US
dc.typeResearch Paperen_US
dc.contributor.departmentAssociate Prof., Faculty of Materials Science and Engineering, K. N. Toosi University of Technology, Tehran, Iranen_US
dc.contributor.departmentFaculty of Materials Science and Engineering, K. N. Toosi University of Technology, Tehran, Iran.en_US
dc.citation.volume7
dc.citation.issue1
dc.citation.spage99
dc.citation.epage108


فایل‌های این مورد

Thumbnail

این مورد در مجموعه‌های زیر وجود دارد:

نمایش مختصر رکورد