نمایش مختصر رکورد

dc.contributor.authorAmini, Mohammaden_US
dc.contributor.authorRezaeenour, Jalalen_US
dc.contributor.authorHadavandi, Esmaeilen_US
dc.date.accessioned1399-07-09T05:30:01Zfa_IR
dc.date.accessioned2020-09-30T05:30:01Z
dc.date.available1399-07-09T05:30:01Zfa_IR
dc.date.available2020-09-30T05:30:01Z
dc.date.issued2014-10-01en_US
dc.date.issued1393-07-09fa_IR
dc.date.submitted2014-03-29en_US
dc.date.submitted1393-01-09fa_IR
dc.identifier.citationAmini, Mohammad, Rezaeenour, Jalal, Hadavandi, Esmaeil. (2014). Effective Intrusion Detection with a Neural Network Ensemble Using Fuzzy Clustering and Stacking Combination Method. Journal of Computing and Security, 1(4), 293-305.en_US
dc.identifier.issn2322-4460
dc.identifier.issn2383-0417
dc.identifier.urihttp://jcomsec.ui.ac.ir/article_21862.html
dc.identifier.urihttps://iranjournals.nlai.ir/handle/123456789/283151
dc.description.abstractData mining techniques are widely used for intrusion detection since they have the capability of automation and improving the performance. However, using a single classification technique for intrusion detection might involve some difficulties and limitations such as high complexity, instability, and low detection precision for less frequent attacks. Ensemble classifiers can address these issues as they combine different classifiers and obtain better results for predictions. In this paper, a novel ensemble method with neural networks is proposed for intrusion detection based on fuzzy clustering and stacking combination method. We use fuzzy clustering in order to divide the dataset into more homogeneous portions. The stacking combination method is used to aggregate the predictions of the base models and reduce their errors in order to enhance detection accuracy. The experimental results on NSL-KDD dataset demonstrate that the performance of our proposed ensemble method is higher compared to other well-known classification techniques, particularly when the classes of attacks are small.en_US
dc.format.extent978
dc.format.mimetypeapplication/pdf
dc.languageEnglish
dc.language.isoen_US
dc.publisherUniversity of Isfahan & Iranian Society of Cryptologyen_US
dc.relation.ispartofJournal of Computing and Securityen_US
dc.subjectIntrusion Detectionen_US
dc.subjectEnsemble classifiersen_US
dc.subjectStackingen_US
dc.subjectFuzzy Clusteringen_US
dc.subjectArtificial Neural Networksen_US
dc.titleEffective Intrusion Detection with a Neural Network Ensemble Using Fuzzy Clustering and Stacking Combination Methoden_US
dc.typeTexten_US
dc.contributor.departmentDepartment of Information Technology, University of Qomen_US
dc.contributor.departmentDepartment of Information Technology, University of Qomen_US
dc.contributor.departmentDepartment of Information Technology, University of Qomen_US
dc.citation.volume1
dc.citation.issue4
dc.citation.spage293
dc.citation.epage305
nlai.contributor.orcid0000-0003-3765-5070


فایل‌های این مورد

Thumbnail

این مورد در مجموعه‌های زیر وجود دارد:

نمایش مختصر رکورد