نمایش مختصر رکورد

dc.contributor.authorEbrahimi, M. M.en_US
dc.contributor.authorMahmoudi, M.en_US
dc.date.accessioned1399-07-08T17:44:43Zfa_IR
dc.date.accessioned2020-09-29T17:44:43Z
dc.date.available1399-07-08T17:44:43Zfa_IR
dc.date.available2020-09-29T17:44:43Z
dc.date.issued2011-05-01en_US
dc.date.issued1390-02-11fa_IR
dc.date.submitted2009-02-02en_US
dc.date.submitted1387-11-14fa_IR
dc.identifier.citationEbrahimi, M. M., Mahmoudi, M.. (2011). Bivariations and tensor products. Iranian Journal of Science and Technology (Sciences), 35(2), 117-124. doi: 10.22099/ijsts.2011.2135en_US
dc.identifier.issn1028-6276
dc.identifier.urihttps://dx.doi.org/10.22099/ijsts.2011.2135
dc.identifier.urihttp://ijsts.shirazu.ac.ir/article_2135.html
dc.identifier.urihttps://iranjournals.nlai.ir/handle/123456789/28247
dc.description.abstractThe ordinary tensor product of modules is defined using bilinear maps (bimorphisms), that are linear in eachcomponent. keeping this in mind, Linton and Banaschewski with Nelson defined and studied the tensor product in an equational category and in a general (concrete) category K, respectively, using bimorphisms, that is, defined via the Hom-functor on K. Also, the so-called sesquilinear, or one and a half linear maps and the corresponding tensor products generalize these notions for modules and vector spaces. In this paper, taking a concrete category K and an arbitrary subfunctor H of the functor U¢ = Hom  (Uop ´U) rather than just the Hom-functor, where U is the underlying set functor on K, we generalize sesquilinearity to bivariation and study the related notions such as functional internal lifts, universal bivariants, tensor products, and their interdependence.en_US
dc.format.extent103
dc.format.mimetypeapplication/pdf
dc.languageEnglish
dc.language.isoen_US
dc.publisherSpringeren_US
dc.relation.ispartofIranian Journal of Science and Technology (Sciences)en_US
dc.relation.isversionofhttps://dx.doi.org/10.22099/ijsts.2011.2135
dc.subjectBilinearen_US
dc.subjectbivarianceen_US
dc.subjectfunctional internal liften_US
dc.subjecttensor producten_US
dc.titleBivariations and tensor productsen_US
dc.typeTexten_US
dc.typeRegular Paperen_US
dc.contributor.departmentDepartment of Mathematics, Center of Excellence in Algebraic and Logical Structures in Discrete Mathematics, Shahid Beheshti University, G. C., Tehran, Iranen_US
dc.contributor.departmentDepartment of Mathematics, Center of Excellence in Algebraic and Logical Structures in Discrete Mathematics, Shahid Beheshti University, G. C., Tehran, Iranen_US
dc.citation.volume35
dc.citation.issue2
dc.citation.spage117
dc.citation.epage124


فایل‌های این مورد

Thumbnail

این مورد در مجموعه‌های زیر وجود دارد:

نمایش مختصر رکورد