| dc.contributor.author | Shirazi, Esmaeil | en_US |
| dc.date.accessioned | 1399-07-09T05:24:18Z | fa_IR |
| dc.date.accessioned | 2020-09-30T05:24:18Z | |
| dc.date.available | 1399-07-09T05:24:18Z | fa_IR |
| dc.date.available | 2020-09-30T05:24:18Z | |
| dc.date.issued | 2020-06-01 | en_US |
| dc.date.issued | 1399-03-12 | fa_IR |
| dc.date.submitted | 2018-07-16 | en_US |
| dc.date.submitted | 1397-04-25 | fa_IR |
| dc.identifier.citation | Shirazi, Esmaeil. (2020). Nonparametric wavelet Quantile density estimations based on biased data. Journal of Computational Statistics and Modeling, 1(1), 143-158. doi: 10.22054/jcsm.2018.34089.1009 | en_US |
| dc.identifier.issn | 2676-5926 | |
| dc.identifier.issn | 2676-5934 | |
| dc.identifier.uri | https://dx.doi.org/10.22054/jcsm.2018.34089.1009 | |
| dc.identifier.uri | http://jcsm.atu.ac.ir/article_9943.html | |
| dc.identifier.uri | https://iranjournals.nlai.ir/handle/123456789/281234 | |
| dc.description.abstract | Estimation of a quantile density function from biased data is a frequent problem in industrial life testing<br /> experiments and medical studies. <br /> The estimation of a quantile density function in the biased nonparametric regression model is inves-<br /> tigated. We propose and develop a new wavelet-based methodology for this problem. In particular, an<br /> adaptive hard thresholding wavelet estimator is constructed. Under mild assumptions on the model, we<br /> prove that it enjoys powerful mean integrated squared error properties over Besov balls. The performance<br /> of proposed estimator is investigated by a numerical study.<br /> In this study, we develop two types of wavelet estimators for the quantile density function when data<br /> comes from a biased distribution function. Our wavelet hard thresholding estimator which is introduced<br /> as a nonlinear estimator, has the feature to be adaptive according to q(x). We show that these estimators<br /> attain optimal and nearly optimal rates of convergence over a wide range of Besov function classes. | en_US |
| dc.format.extent | 316 | |
| dc.format.mimetype | application/pdf | |
| dc.language | English | |
| dc.language.iso | en_US | |
| dc.publisher | Allameh Tabataba’i University Press | en_US |
| dc.publisher | Allameh Tabataba'i University | fa_IR |
| dc.relation.ispartof | Journal of Computational Statistics and Modeling | en_US |
| dc.relation.ispartof | Journal of Computational Statistics and Modeling | fa_IR |
| dc.relation.isversionof | https://dx.doi.org/10.22054/jcsm.2018.34089.1009 | |
| dc.subject | Adaptivity | en_US |
| dc.subject | Biased Data | en_US |
| dc.subject | Quantile density estimation | en_US |
| dc.subject | Wavelets | en_US |
| dc.title | Nonparametric wavelet Quantile density estimations based on biased data | en_US |
| dc.type | Text | en_US |
| dc.type | invited | en_US |
| dc.contributor.department | Department of Statistics, Faculty of Science, Gonbad Kavous University, Gonbad Kavous 4971799151, Iran. | en_US |
| dc.citation.volume | 1 | |
| dc.citation.issue | 1 | |
| dc.citation.spage | 143 | |
| dc.citation.epage | 158 | |