نمایش مختصر رکورد

dc.contributor.authorShirazi, Esmaeilen_US
dc.date.accessioned1399-07-09T05:24:18Zfa_IR
dc.date.accessioned2020-09-30T05:24:18Z
dc.date.available1399-07-09T05:24:18Zfa_IR
dc.date.available2020-09-30T05:24:18Z
dc.date.issued2020-06-01en_US
dc.date.issued1399-03-12fa_IR
dc.date.submitted2018-07-16en_US
dc.date.submitted1397-04-25fa_IR
dc.identifier.citationShirazi, Esmaeil. (2020). Nonparametric wavelet Quantile density estimations based on biased data. Journal of Computational Statistics and Modeling, 1(1), 143-158. doi: 10.22054/jcsm.2018.34089.1009en_US
dc.identifier.issn2676-5926
dc.identifier.issn2676-5934
dc.identifier.urihttps://dx.doi.org/10.22054/jcsm.2018.34089.1009
dc.identifier.urihttp://jcsm.atu.ac.ir/article_9943.html
dc.identifier.urihttps://iranjournals.nlai.ir/handle/123456789/281234
dc.description.abstractEstimation of a quantile density function from biased data is a frequent problem in industrial life testing<br /> experiments and medical studies. <br /> The estimation of a quantile density function in the biased nonparametric regression model is inves-<br /> tigated. We propose and develop a new wavelet-based methodology for this problem. In particular, an<br /> adaptive hard thresholding wavelet estimator is constructed. Under mild assumptions on the model, we<br /> prove that it enjoys powerful mean integrated squared error properties over Besov balls. The performance<br /> of proposed estimator is investigated by a numerical study.<br /> In this study, we develop two types of wavelet estimators for the quantile density function when data<br /> comes from a biased distribution function. Our wavelet hard thresholding estimator which is introduced<br /> as a nonlinear estimator, has the feature to be adaptive according to q(x). We show that these estimators<br /> attain optimal and nearly optimal rates of convergence over a wide range of Besov function classes.en_US
dc.format.extent316
dc.format.mimetypeapplication/pdf
dc.languageEnglish
dc.language.isoen_US
dc.publisherAllameh Tabataba’i University Pressen_US
dc.publisherAllameh Tabataba'i Universityfa_IR
dc.relation.ispartofJournal of Computational Statistics and Modelingen_US
dc.relation.ispartofJournal of Computational Statistics and Modelingfa_IR
dc.relation.isversionofhttps://dx.doi.org/10.22054/jcsm.2018.34089.1009
dc.subjectAdaptivityen_US
dc.subjectBiased Dataen_US
dc.subjectQuantile density estimationen_US
dc.subjectWaveletsen_US
dc.titleNonparametric wavelet Quantile density estimations based on biased dataen_US
dc.typeTexten_US
dc.typeinviteden_US
dc.contributor.departmentDepartment of Statistics, Faculty of Science, Gonbad Kavous University, Gonbad Kavous 4971799151, Iran.en_US
dc.citation.volume1
dc.citation.issue1
dc.citation.spage143
dc.citation.epage158


فایل‌های این مورد

Thumbnail

این مورد در مجموعه‌های زیر وجود دارد:

نمایش مختصر رکورد