نمایش مختصر رکورد

dc.contributor.authorLotfi, M.en_US
dc.contributor.authorRazavi, H.en_US
dc.date.accessioned1399-07-09T04:14:37Zfa_IR
dc.date.accessioned2020-09-30T04:14:37Z
dc.date.available1399-07-09T04:14:37Zfa_IR
dc.date.available2020-09-30T04:14:37Z
dc.date.issued2014-09-01en_US
dc.date.issued1393-06-10fa_IR
dc.date.submitted2013-10-11en_US
dc.date.submitted1392-07-19fa_IR
dc.identifier.citationLotfi, M., Razavi, H.. (2014). An Expert System for Identification of Forecasting Model for Time Series. Advances in Industrial Engineering, 48, 71-82. doi: 10.22059/jieng.2014.51786en_US
dc.identifier.issn2423-6896
dc.identifier.issn2423-6888
dc.identifier.urihttps://dx.doi.org/10.22059/jieng.2014.51786
dc.identifier.urihttps://jieng.ut.ac.ir/article_51786.html
dc.identifier.urihttps://iranjournals.nlai.ir/handle/123456789/257526
dc.description.abstract<span style="font-family: 'Times New Roman','serif'; font-size: 12pt; mso-bidi-language: FA; mso-fareast-font-family: 'Times New Roman'; mso-ansi-language: EN-US; mso-fareast-language: EN-US;">Identifications </span><span style="font-family: 'Times New Roman','serif'; font-size: 11pt; mso-bidi-language: FA; mso-fareast-font-family: 'Times New Roman'; mso-ansi-language: EN-US; mso-fareast-language: EN-US;">and<br />analysis of time series are time consuming, based on trial and error and highly<br />dependent on expert judgments. This is mainly due to the presence of various<br />models for forecasting time series, as well as introducing new techniques for<br />analysis and predictions. In this paper, expert system structure is used to<br />replace traditional methods of model identifications for time series. Firstly,<br />several search engines are defined and analytical methods are specified. Next,<br />the knowledge base is developed such that a proper model can be assigned to<br />each data set. The goodness of fit is then evaluated by mathematical indices.<br />Repeating the process and modifying the responses to account for uncertain<br />situations, will provide a set of models to make the final decision. Lastly,<br />the performance of the proposed expert system is verified by a series of sample<br />data as a case study and the efficiency of the system is approved.</span>en_US
dc.format.extent645
dc.format.mimetypeapplication/pdf
dc.languageEnglish
dc.language.isoen_US
dc.publisherUniversity of Tehranen_US
dc.relation.ispartofAdvances in Industrial Engineeringen_US
dc.relation.isversionofhttps://dx.doi.org/10.22059/jieng.2014.51786
dc.subjectExpert systemen_US
dc.subjectforecastingen_US
dc.subjecttime seriesen_US
dc.subjectForecasting erroren_US
dc.titleAn Expert System for Identification of Forecasting Model for Time Seriesen_US
dc.typeTexten_US
dc.typeResearch Paperen_US
dc.citation.volume48
dc.citation.spage71
dc.citation.epage82


فایل‌های این مورد

Thumbnail

این مورد در مجموعه‌های زیر وجود دارد:

نمایش مختصر رکورد