نمایش مختصر رکورد

dc.contributor.authorصبوری فرد, حسینfa_IR
dc.contributor.authorقاسم نژاد, عظیمfa_IR
dc.contributor.authorهمتی, خدایارfa_IR
dc.contributor.authorهزارجریبی, ابوطالبfa_IR
dc.contributor.authorبهرامی, محمودرضاfa_IR
dc.date.accessioned1399-07-09T02:49:40Zfa_IR
dc.date.accessioned2020-09-30T02:49:40Z
dc.date.available1399-07-09T02:49:40Zfa_IR
dc.date.available2020-09-30T02:49:40Z
dc.date.issued2019-08-23en_US
dc.date.issued1398-06-01fa_IR
dc.date.submitted2017-12-04en_US
dc.date.submitted1396-09-13fa_IR
dc.identifier.citationصبوری فرد, حسین, قاسم نژاد, عظیم, همتی, خدایار, هزارجریبی, ابوطالب, بهرامی, محمودرضا. (1398). ارزیابی کارآیی مدل های شبکه عصبی مصنوعی در برآورد عملکرد اسانس گیاه مرزه تابستانه بر اساس ویژگی های زودیافت خاک. مجله پژوهش‌های تولید گیاهی, 26(2), 47-58. doi: 10.22069/jopp.2019.14351.2288fa_IR
dc.identifier.issn2322-2050
dc.identifier.issn2322-2778
dc.identifier.urihttps://dx.doi.org/10.22069/jopp.2019.14351.2288
dc.identifier.urihttp://jopp.gau.ac.ir/article_4657.html
dc.identifier.urihttps://iranjournals.nlai.ir/handle/123456789/227929
dc.description.abstractسابقه و هدف: یکی از نیازهای مهم در برنامه‌ریزی تولید و فرآوری گیاهان دارویی به منظور حصول عملکرد بالا و با کیفیت مطلوب، ارزیابی اولیه خصوصیات فیزیکی و شیمیایی خاک منطقه است که می‌توان با اجتناب از کاربرد غیرضروری آزمایشات متنوع خاکشناسی، هزینه تولید را به حداقل کاهش داد. مرزه تابستانه (Satureja hortensis L) از جمله گیاهان دارویی پرکاربرد است که میزان اسانس و ترکیبات آن شاخص کیفی گیاه محسوب می‌شود. امروزه با ورود مدل‌های رگرسیونی چند متغیره و مدل‌های شبکه مصنوعی در تحقیقات، بسیاری از روابط پیچیده موجود در طبیعت قابل درک است. از این رو ضرورت برآورد عملکرد اسانس گیاه مرزه با استفاده از روش‌های سریع، کم هزینه و با دقتی قابل قبول احساس می‌گردد.<br /> مواد و روش‌ها: این پژوهش بصورت طرح کاملاً تصادفی، در سه تکرار و بصورت گلدانی انجام شد. از مناطق مختلف شهرستان نیشابور 53 نمونه خاک تهیه و پارامترهای زودیافت آن که شامل 1-درصد شن، 2-درصد سیلت، 3-درصد رس، 4-مواد آلی، 5-اسیدیته، 6-شوری، 7-فسفر، 8-پتاسیم، 9-نیتروژن، 10-درصد کربن می‌باشد، در آزمایشگاه اندازه‌گیری و نتایج اولیه بدست آمد. تقریباً 90 روز پس از کشت بذور در گلدان‌های حاوی نمونه‌های مختلف خاکی، نمونه‌گیری از آن‌ها صورت گرفت. سپس نمونه‌ها به مدت 24 ساعت در آون 40 درجه سانتی‌گراد قرار گرفتند تا خشک شوند. در نهایت رابطه‌های بین عملکرد اسانس گیاه مرزه و پارامترهای زودیافت خاک با تجزیه شبکه عصبی مصنوعی و با استفاده از نرم افزار Matlab7.9 مشخص گردید. برای بدست آوردن حساس‌ترین پارامترها، تجزیه حساسیت به روش ضریب بدون بعد حساسیت محاسبه گردید. بطوری که اگر مقدار ضریب حساسیت پارامتری از 1/0 بیش‌تر باشد، آن پارامتر جز پارامترهای حساس مدل محسوب ‌شد.<br /> یافته‌ها: شبکه عصبی مصنوعی از الگوی شبکه عصبی مصنوعی انسان شبیه‌سازی شده است، به گونه‌ای که می‌تواند پس از آموزش، پارامترهای خروجی مورد نظر را با اعمال پارامترهای ورودی برآورد نماید. در این پژوهش، از ساختار شبکه عصبی پرسپترون با الگوریتم آموزشی مارکوآت لونبرگ استفاده شد تا عملکرد اسانس از پارامترهای زودیافت خاک همچون بافت خاک، مواد آلی و عناصر پرمصرف برآورد شود. بالا بودن مقادیر R2 و پایین بودن مقادیر RMSE یاد شده بیانگر نزدیک بودن داده‌های پیش‌بینی با داده‌های اندازه‌گیری و دقت بالای مدل در برآورد عملکرد اسانس گیاه مرزه تابستانه است. بر این اساس پارامترهای بافت خاک(درصد شن، سیلت و رس) و کربن آلی، ماده آلی، شوری، پتاسیم و اسیدیته خاک به ترتیب به عنوان حساس‌ترین پارامترها انتخاب گردید. <br /> نتیجه‌گیری: نتایج نشان داد که مدل‌های عصبی ایجاد شده قادر نبودند عملکرد اسانس در گیاه مرزه تابستانه را با حداکثر دقت (R2= 0.50) برآورد نمایند. از بین 8 مدل برازش یافته یک مدل مبتنی بر متغیرهای مستقل EC + بافت + کربن + ماده آلی + پتاسیم + pH عملکرد بهتری داشت، با این وجود تعداد بالای عوامل ورودی این مدل محدودیت تلقی می‌شود. از آنجایی که این تحقیق جزء اولین بررسی‌ها در مورد برآورد عملکرد اسانس گیاهان دارویی بود، لذا ادامه تحقیق و بررسی در این خصوص و همچنین پیش‌بینی عملکرد سایر گیاهان دارویی به این روش پیشنهاد می‌گردد.fa_IR
dc.format.extent405
dc.format.mimetypeapplication/pdf
dc.languageفارسی
dc.language.isofa_IR
dc.publisherدانشگاه علوم کشاورزی و منابع طبیعی گرگانfa_IR
dc.publisherGorgan University Of Agricultural Sciences anden_US
dc.relation.ispartofمجله پژوهش‌های تولید گیاهیfa_IR
dc.relation.ispartofJournal of Plant Production Researchen_US
dc.relation.isversionofhttps://dx.doi.org/10.22069/jopp.2019.14351.2288
dc.subjectزیست تودهfa_IR
dc.subjectبافت خاکfa_IR
dc.subjectگیاهان داروییfa_IR
dc.subjectعملکردfa_IR
dc.subjectگیاهان داروییfa_IR
dc.titleارزیابی کارآیی مدل های شبکه عصبی مصنوعی در برآورد عملکرد اسانس گیاه مرزه تابستانه بر اساس ویژگی های زودیافت خاکfa_IR
dc.typeTexten_US
dc.typeپژوهشیfa_IR
dc.contributor.departmentدانش آموخته کارشناسی ارشد گروه علوم باغبانی دانشگاه علوم کشاورزی ومنابع طبیعی گرگانfa_IR
dc.contributor.departmentهیات علمی، دانشیار گروه علوم باغبانی دانشگاه علوم کشاورزی و منابع طبیعی گرگانfa_IR
dc.contributor.departmentرئیس دانشکده تولید گیاهی-دانشگاه علوم کشاورزی و منابع طبیعی گرگانfa_IR
dc.contributor.departmentدانشیار گروه مهندسی آب دانشگاه علوم کشاورزی و منابع طبیعی گرگانfa_IR
dc.contributor.departmentمدرس دپارتمان مهندسی تولیدات گیاهی، دانشکده کشاورزی، دانشگاه فنی و حرفه‌ای خراسان رضویfa_IR
dc.citation.volume26
dc.citation.issue2
dc.citation.spage47
dc.citation.epage58


فایل‌های این مورد

Thumbnail

این مورد در مجموعه‌های زیر وجود دارد:

نمایش مختصر رکورد