نمایش مختصر رکورد

dc.contributor.authorYousefi, Vajiheen_US
dc.contributor.authorMohebbi-Kalhori, Davoden_US
dc.contributor.authorSamimi, Abdolrezaen_US
dc.date.accessioned1399-07-09T01:33:34Zfa_IR
dc.date.accessioned2020-09-30T01:33:34Z
dc.date.available1399-07-09T01:33:34Zfa_IR
dc.date.available2020-09-30T01:33:34Z
dc.date.issued2019-02-01en_US
dc.date.issued1397-11-12fa_IR
dc.date.submitted2019-06-21en_US
dc.date.submitted1398-03-31fa_IR
dc.identifier.citationYousefi, Vajihe, Mohebbi-Kalhori, Davod, Samimi, Abdolreza. (2019). Equivalent Electrical Circuit Modeling of Ceramic-Based Microbial Fuel Cells Using the Electrochemical Impedance Spectroscopy (EIS) Analysis. Journal of Renewable Energy and Environment, 6(1), 21-28. doi: 10.30501/jree.2019.95555en_US
dc.identifier.issn2423-5547
dc.identifier.issn2423-7469
dc.identifier.urihttps://dx.doi.org/10.30501/jree.2019.95555
dc.identifier.urihttp://www.jree.ir/article_95555.html
dc.identifier.urihttps://iranjournals.nlai.ir/handle/123456789/201523
dc.description.abstractThe effect of the thickness of ceramic membrane on the productivity of microbial fuel cells (MFCs) was investigated with respect to the electricity generation and domestic wastewater treatment efficiencies. The thickest ceramic membrane (9 mm) gained the highest coulombic efficiency (27.58±4.2 %), voltage (681.15±33.1 mV), and current and power densities (447.11±21.37 mA/m2, 63.82±10.42 mW/m2) compared to the 6- and 3-mm thick separators. The results of electrochemical impedance spectroscopy (EIS) analysis were investigated to identify the internal resistance constituents by proposing the appropriate equivalent electrical circuit. The Gerischer element was modeled as the coupled reaction, and diffusion in the porous carbon electrodes and the constant phase element was assimilated into the electrical double-layer capacitance. The thickest ceramic (9 mm) was found to have the largest ohmic resistance; however, owing to its superior barrier capability, it provided more anoxic conditions for better accommodation of exoelectrogenic bacteria in the anode chamber. Therefore, lower charge transfer, fewer diffusional impedances, and higher rates of anodic reactions were achieved. Excessive oxygen and substrate crossover through the thinner ceramics (of 6 and 3 mm) resulted in the suppressed development of anaerobic anodic biofilm and the accomplishment of aerobic substrate respiration without electricity generation.en_US
dc.format.extent994
dc.format.mimetypeapplication/pdf
dc.languageEnglish
dc.language.isoen_US
dc.publisherMaterials and Energy Research Center (MERC) Iranian Association of Chemical Engineers (IAChE)en_US
dc.relation.ispartofJournal of Renewable Energy and Environmenten_US
dc.relation.isversionofhttps://dx.doi.org/10.30501/jree.2019.95555
dc.subjectMicrobial fuel cellen_US
dc.subjectDomestic Wastewateren_US
dc.subjectCeramic membraneen_US
dc.subjectGerischer elementen_US
dc.subjectconstant phase elementen_US
dc.subjectAdvanced Energy Technologiesen_US
dc.subjectFuel cellsen_US
dc.titleEquivalent Electrical Circuit Modeling of Ceramic-Based Microbial Fuel Cells Using the Electrochemical Impedance Spectroscopy (EIS) Analysisen_US
dc.typeTexten_US
dc.typeResearch Articleen_US
dc.contributor.departmentDepartment of Chemical Engineering, Faculty of Engineering, University of Sistan and Baluchestan, Zahedan, Iranen_US
dc.contributor.departmentDepartment of Chemical Engineering, Faculty of Engineering, University of Sistan and Baluchestan, Zahedan, Iranen_US
dc.contributor.departmentDepartment of Chemical Engineering, Faculty of Engineering, University of Sistan and Baluchestan, Zahedan, Iranen_US
dc.citation.volume6
dc.citation.issue1
dc.citation.spage21
dc.citation.epage28
nlai.contributor.orcid0000-0002-4055-5997


فایل‌های این مورد

Thumbnail

این مورد در مجموعه‌های زیر وجود دارد:

نمایش مختصر رکورد