| dc.contributor.author | Tahamtan, Sh. | en_US |
| dc.date.accessioned | 1399-07-08T17:23:48Z | fa_IR |
| dc.date.accessioned | 2020-09-29T17:23:48Z | |
| dc.date.available | 1399-07-08T17:23:48Z | fa_IR |
| dc.date.available | 2020-09-29T17:23:48Z | |
| dc.date.issued | 2010-01-01 | en_US |
| dc.date.issued | 1388-10-11 | fa_IR |
| dc.date.submitted | 2015-09-30 | en_US |
| dc.date.submitted | 1394-07-08 | fa_IR |
| dc.identifier.citation | Tahamtan, Sh.. (2010). Artinianess of Graded Generalized Local Cohomology Modules. Theory of Approximation and Applications, 7(1), 107-117. | en_US |
| dc.identifier.issn | 2538-2217 | |
| dc.identifier.issn | 2676-3052 | |
| dc.identifier.uri | http://msj.iau-arak.ac.ir/article_515385.html | |
| dc.identifier.uri | https://iranjournals.nlai.ir/handle/123456789/20002 | |
| dc.description.abstract | Let R = L n2N0<br />Rn be a Noetherian homogeneous graded ring with local base<br />ring (R0;m0) of dimension d . Let R+ = Ln2N<br />Rn denote the irrelevant ideal<br />of R and let M and N be two nitely generated graded R-modules. Let<br />t = tR+(M;N) be the rst integer i such that Hi<br />R+(M;N) is not minimax.<br />We prove that if i t, then the set AssR0 (Hi<br />R+(M;N)n) is asymptotically<br />stable for n ! 1 and Hj<br />m0 (Hi<br />R+(M;N)) is Artinian for 0 j 1. More-<br />over, let s = sR+(M;N) be the largest integer i such that Hi<br />R+(M;N) is not<br />minimax. For each i s, we prove that R0<br />m0<br />R0Hi<br />R+(M;N) is Artinian and<br />that Hj<br />m0 (Hi<br />R+(M;N)) is Artinian for d 1 j d. Finally we show that<br />Hd2<br />m0 (Hs<br />R+(M;N)) is Artinian if and only if Hd<br />m0 (Hs1<br />R+<br />(M;N)) is Artinian. | en_US |
| dc.format.extent | 421 | |
| dc.format.mimetype | application/pdf | |
| dc.language | English | |
| dc.language.iso | en_US | |
| dc.publisher | Islamic Azad University of Arak | en_US |
| dc.relation.ispartof | Theory of Approximation and Applications | en_US |
| dc.title | Artinianess of Graded Generalized Local Cohomology Modules | en_US |
| dc.type | Text | en_US |
| dc.type | Research Articles | en_US |
| dc.contributor.department | Department of Mathematics, Islamic Azad University, Borujerd-Branch, Borujerd, iran. | en_US |
| dc.citation.volume | 7 | |
| dc.citation.issue | 1 | |
| dc.citation.spage | 107 | |
| dc.citation.epage | 117 | |