نمایش مختصر رکورد

dc.date.accessioned1399-07-08T17:21:26Zfa_IR
dc.date.accessioned2020-09-29T17:21:26Z
dc.date.available1399-07-08T17:21:26Zfa_IR
dc.date.available2020-09-29T17:21:26Z
dc.date.issued2011-02-01en_US
dc.date.issued1389-11-12fa_IR
dc.date.submitted2013-05-07en_US
dc.date.submitted1392-02-17fa_IR
dc.identifier.citation(2011). Prediction of Gain in LD-CELP Using Hybrid Genetic/PSO-Neural Models. Journal of Advances in Computer Research, 2(1), 1-12.en_US
dc.identifier.issn2345-606X
dc.identifier.issn2345-6078
dc.identifier.urihttp://jacr.iausari.ac.ir/article_631404.html
dc.identifier.urihttps://iranjournals.nlai.ir/handle/123456789/19080
dc.description.abstractIn this paper, the gain in LD-CELP speech coding algorithm is predicted using three neural models, that are equipped by genetic and particle swarm optimization (PSO) algorithms to optimize the structure and parameters of neural networks. Elman, multi-layer perceptron (MLP) and fuzzy ARTMAP are the candidate neural models. The optimized number of nodes in the first and second hidden layers of Elman and MLP and also the initial weights and biases of these nets are determined by genetic algorithm (GA) and PSO. In the fuzzy ARTMAP, the choice parameter, , learning rate, , and vigilance parameter, , are selected by GA and PSO, as well. In this way, the performance of GA and PSO are compared when using different neural architectures in this application. Empirical results show that when gain is predicted by Elman and MLP neural networks with GA/PSOoptimized parameters, the segmental signal to noise ratio (SNRseg) and mean opinion score (MOS) are improved as compared to traditional implementation based on ITU-T G.728 recommendation. On the other hand, fuzzy ARTMAP-based gain predictor reduces the computational complexity noticeably, with no significant degradations in SNRseg and MOS.en_US
dc.format.extent113
dc.format.mimetypeapplication/pdf
dc.languageEnglish
dc.language.isoen_US
dc.publisherSari Branch, Islamic Azad Universityen_US
dc.relation.ispartofJournal of Advances in Computer Researchen_US
dc.subjectSpeech codingen_US
dc.subjectNeural Networksen_US
dc.subjectgenetic algorithmen_US
dc.subjectParticle Swarm Optimizationen_US
dc.titlePrediction of Gain in LD-CELP Using Hybrid Genetic/PSO-Neural Modelsen_US
dc.typeTexten_US
dc.citation.volume2
dc.citation.issue1
dc.citation.spage1
dc.citation.epage12


فایل‌های این مورد

Thumbnail

این مورد در مجموعه‌های زیر وجود دارد:

نمایش مختصر رکورد