نمایش مختصر رکورد

dc.date.accessioned1399-07-08T17:17:09Zfa_IR
dc.date.accessioned2020-09-29T17:17:09Z
dc.date.available1399-07-08T17:17:09Zfa_IR
dc.date.available2020-09-29T17:17:09Z
dc.date.issued2015-02-01en_US
dc.date.issued1393-11-12fa_IR
dc.date.submitted2014-01-25en_US
dc.date.submitted1392-11-05fa_IR
dc.identifier.citation(2015). PREDICTION OF SOIL-WATER CHARACTERISTIC CURVE USING GENE EXPRESSION PROGRAMMING. Iranian Journal of Science and Technology Transactions of Civil Engineering, 39(1), 143-165. doi: 10.22099/ijstc.2015.2763en_US
dc.identifier.issn2228-6160
dc.identifier.urihttps://dx.doi.org/10.22099/ijstc.2015.2763
dc.identifier.urihttp://ijstc.shirazu.ac.ir/article_2763.html
dc.identifier.urihttps://iranjournals.nlai.ir/handle/123456789/17351
dc.description.abstractSoil–Water Characteristic Curve (SWCC) is one of the most important parts of anymodel that describes unsaturated soil behavior as it explains the variation of soil suction withchanges in water content. In this research, Gene Expression Programming (GEP) is employed asan artificial intelligence method for modelling of this curve. The principal advantage of the GEPapproach is its ability to generate powerful predictive equations without any prior assumption onthe possible form of the functional relationship. GEP can operate on large quantities of data inorder to capture nonlinear and complex relationships between variables of the system. The selectedinputs for modelling are the initial void ratio, initial gravimetric water content, logarithm ofsuction normalized with respect to atmospheric air pressure, clay content, and silt content. Themodel output is the gravimetric water content corresponding to the assigned input suction.Sensitivity and parametric analyses are conducted to verify the results. It is also shown that claycontent is the most influential parameter in the soil–water characteristic curve. The resultsillustrate that the advantages of the proposed approach are highlighted.en_US
dc.format.extent550
dc.format.mimetypeapplication/pdf
dc.languageEnglish
dc.language.isoen_US
dc.publisherShiraz Universityen_US
dc.relation.ispartofIranian Journal of Science and Technology Transactions of Civil Engineeringen_US
dc.relation.isversionofhttps://dx.doi.org/10.22099/ijstc.2015.2763
dc.subjectUnsaturated soilen_US
dc.subjectsoil–water characteristic curveen_US
dc.subjectartificial intelligenceen_US
dc.subjectgene expression programmingen_US
dc.titlePREDICTION OF SOIL-WATER CHARACTERISTIC CURVE USING GENE EXPRESSION PROGRAMMINGen_US
dc.typeTexten_US
dc.typeResearch Paperen_US
dc.citation.volume39
dc.citation.issue1
dc.citation.spage143
dc.citation.epage165


فایل‌های این مورد

Thumbnail

این مورد در مجموعه‌های زیر وجود دارد:

نمایش مختصر رکورد