نمایش مختصر رکورد

dc.contributor.authorKhaje-karamodin, A.en_US
dc.contributor.authorRowhanimanesh, A.en_US
dc.contributor.authorAkbarzadeh-Tootoonchi, M.R.en_US
dc.contributor.authorHaji-Kazemi, H.en_US
dc.date.accessioned1399-07-08T21:54:32Zfa_IR
dc.date.accessioned2020-09-29T21:54:32Z
dc.date.available1399-07-08T21:54:32Zfa_IR
dc.date.available2020-09-29T21:54:32Z
dc.date.issued2009-06-01en_US
dc.date.issued1388-03-11fa_IR
dc.date.submitted2009-07-29en_US
dc.date.submitted1388-05-07fa_IR
dc.identifier.citationKhaje-karamodin, A., Rowhanimanesh, A., Akbarzadeh-Tootoonchi, M.R., Haji-Kazemi, H.. (2009). Semi-Active Control of Structures Using a Neuro-Inverse Model of MR Dampers. Scientia Iranica, 16(3)en_US
dc.identifier.issn1026-3098
dc.identifier.issn2345-3605
dc.identifier.urihttp://scientiairanica.sharif.edu/article_3107.html
dc.identifier.urihttps://iranjournals.nlai.ir/handle/123456789/120724
dc.description.abstractAbstract. A semi-active controller-based neural network for a 3 story nonlinear benchmark structure equipped with a Magneto Rheological (MR) damper is presented and evaluated. An inverse neural network model (NIMR) is constructed to replicate the inverse dynamics of the MR damper. A Linear Quadratic Gaussian (LQG) controller is also designed to produce the optimal control force. The LQG controller and the NIMR models are linked to control the structure. The e ectiveness of the NIMR is illustrated and veri ed using the simulated response of a full-scale, nonlinear, seismically excited, 3-story benchmark building excited by several historical earthquake records. The semi-active system using the NIMR model is compared to the performance of an active LQG and a Clipped Optimal Control (COC) system, which is based on the same nominal controller as used in the NIMR damper control algorithm. Two passive control systems are also considered and compared. The results demonstrate that by using the NIMR model, the MR damper force can be commanded to follow closely the desirable optimal control force. The results also show that the control system is e ective, and achieves better performance than active LQG and COC system. The optimal passive controller performs better than the NIMR. However, the performance of NIMR will be improved if a more e ective active controller is replaced by a LQG controller.en_US
dc.format.extent2151
dc.format.mimetypeapplication/pdf
dc.languageEnglish
dc.language.isoen_US
dc.publisherSharif University of Technologyen_US
dc.relation.ispartofScientia Iranicaen_US
dc.subjectStructural Controlen_US
dc.subjectSemi-Activeen_US
dc.subjectNeural networken_US
dc.subjectNonlinearen_US
dc.subjectMR damperen_US
dc.titleSemi-Active Control of Structures Using a Neuro-Inverse Model of MR Dampersen_US
dc.typeTexten_US
dc.contributor.departmentDepartment of Civil Engineering,Ferdowsi University of Mashhaden_US
dc.contributor.departmentDepartment of Civil Engineering,Ferdowsi University of Mashhaden_US
dc.contributor.departmentDepartment of Civil Engineering,Sharif University of Technologyen_US
dc.contributor.departmentDepartment of Civil Engineering,Sharif University of Technologyen_US
dc.citation.volume16
dc.citation.issue3


فایل‌های این مورد

Thumbnail

این مورد در مجموعه‌های زیر وجود دارد:

نمایش مختصر رکورد