نمایش مختصر رکورد

dc.contributor.authorAshoor, M.en_US
dc.date.accessioned1399-07-08T21:53:08Zfa_IR
dc.date.accessioned2020-09-29T21:53:08Z
dc.date.available1399-07-08T21:53:08Zfa_IR
dc.date.available2020-09-29T21:53:08Z
dc.date.issued2004-07-01en_US
dc.date.issued1383-04-11fa_IR
dc.date.submitted2006-07-11en_US
dc.date.submitted1385-04-20fa_IR
dc.identifier.citationAshoor, M.. (2004). Syllable Duration Prediction for Farsi Text-to-Speech Systems. Scientia Iranica, 11(3)en_US
dc.identifier.issn1026-3098
dc.identifier.issn2345-3605
dc.identifier.urihttp://scientiairanica.sharif.edu/article_2552.html
dc.identifier.urihttps://iranjournals.nlai.ir/handle/123456789/120169
dc.description.abstractIn this paper, two different statistical approaches are used for duration prediction of the Farsi language. These two statistical models are Neural Networks (NN) and Classification And Regression Trees (CART). The first step in this work was to create a database and develop a flexible feature extraction and selection module. In the next step, the output of the feature selection module was used to train both models. The results of the trained models are further studied to determine the most important parameters affecting the syllable duration in Farsi. The model accuracy is evaluated by using separate training and test data. In the third step of this work, an automatic rule generator module was added to the CART model. These duration prediction rules can be easily applied in a rule-based speech synthesis system.en_US
dc.format.extent386
dc.format.mimetypeapplication/pdf
dc.languageEnglish
dc.language.isoen_US
dc.publisherSharif University of Technologyen_US
dc.relation.ispartofScientia Iranicaen_US
dc.titleSyllable Duration Prediction for Farsi Text-to-Speech Systemsen_US
dc.typeTexten_US
dc.contributor.departmentDepartment of Electrical Engineering,Sharif University of Technologyen_US
dc.citation.volume11
dc.citation.issue3


فایل‌های این مورد

Thumbnail

این مورد در مجموعه‌های زیر وجود دارد:

نمایش مختصر رکورد