نمایش مختصر رکورد

dc.contributor.authorKarimi Ghaleh Jough, Fooaden_US
dc.contributor.authorBeheshti Aval, S.B.en_US
dc.date.accessioned1399-07-08T21:52:18Zfa_IR
dc.date.accessioned2020-09-29T21:52:18Z
dc.date.available1399-07-08T21:52:18Zfa_IR
dc.date.available2020-09-29T21:52:18Z
dc.date.issued2018-12-01en_US
dc.date.issued1397-09-10fa_IR
dc.date.submitted2016-01-12en_US
dc.date.submitted1394-10-22fa_IR
dc.identifier.citationKarimi Ghaleh Jough, Fooad, Beheshti Aval, S.B.. (2018). Uncertainty analysis through development of seismic fragility curve for an SMRF structure using an adaptive neuro-fuzzy inference system based on fuzzy C-means algorithm. Scientia Iranica, 25(6), 2938-2953. doi: 10.24200/sci.2017.4232en_US
dc.identifier.issn1026-3098
dc.identifier.issn2345-3605
dc.identifier.urihttps://dx.doi.org/10.24200/sci.2017.4232
dc.identifier.urihttp://scientiairanica.sharif.edu/article_4232.html
dc.identifier.urihttps://iranjournals.nlai.ir/handle/123456789/119874
dc.description.abstractThe present study is focused mainly on development of the fragility curves for the sidesway collapse limit state. One important aspect of deriving fragility curves is how uncertainties are blended and incorporated into the model under seismic conditions. The collapse fragility curve is in uenced by di erent uncertainty sources. In this paper, in order to reduce the dispersion of uncertainties, Adaptive Neuro Fuzzy Inference System (ANFIS)based on the fuzzy C-means algorithm is used to derive structural collapse fragility curve, considering e ects of epistemic and aleatory uncertainties associated with seismic loads and structural modeling. This approach is applied to a Steel Moment-Resisting Frame (SMRF) structural model whose relevant uncertainties have not been yet considered by others in particular by using ANFIS method for collapse damage state. The results show the superiority of ANFIS solution in comparison with excising probabilistic methods, e.g., First- Order Second-Moment Method (FOSM) and Monte Carlo (MC)/Response Surface Method (RSM) to incorporate epistemic uncertainty in terms of reducing computational e ort and increasing calculation accuracy. As a result, it can be concluded that, in comparison with the proposed method rather than Monte Carlo method, the mean and standard deviation are increased by 2.2% and 10%, respectively.en_US
dc.format.extent5260
dc.format.mimetypeapplication/pdf
dc.languageEnglish
dc.language.isoen_US
dc.publisherSharif University of Technologyen_US
dc.relation.ispartofScientia Iranicaen_US
dc.relation.isversionofhttps://dx.doi.org/10.24200/sci.2017.4232
dc.subjectANFIS C-means algorithmen_US
dc.subjectCollapse Fragility Curveen_US
dc.subjectFirst order second moment methoden_US
dc.subjectEpistemic uncertaintyen_US
dc.subjectAleatory uncertaintyen_US
dc.subjectIncremental Dynamic Analysisen_US
dc.subjectCivil Engineeringen_US
dc.titleUncertainty analysis through development of seismic fragility curve for an SMRF structure using an adaptive neuro-fuzzy inference system based on fuzzy C-means algorithmen_US
dc.typeTexten_US
dc.typeArticleen_US
dc.contributor.departmentFaculty of Civil Engineering, Eastern Mediterranean University, Famagusta, via Mersin 10 Turkeyen_US
dc.contributor.departmentFaculty of Civil Engineering, K. N. Toosi University of Technology, Tehran, Iranen_US
dc.citation.volume25
dc.citation.issue6
dc.citation.spage2938
dc.citation.epage2953


فایل‌های این مورد

Thumbnail

این مورد در مجموعه‌های زیر وجود دارد:

نمایش مختصر رکورد