نمایش مختصر رکورد

dc.contributor.authorHusseinzadeh Kashan, Alien_US
dc.contributor.authorEyvazi, Mohammaden_US
dc.contributor.authorAbbasi-Pooya, Aminen_US
dc.date.accessioned1399-07-08T21:48:59Zfa_IR
dc.date.accessioned2020-09-29T21:48:59Z
dc.date.available1399-07-08T21:48:59Zfa_IR
dc.date.available2020-09-29T21:48:59Z
dc.date.issued2020-04-01en_US
dc.date.issued1399-01-13fa_IR
dc.date.submitted2017-06-16en_US
dc.date.submitted1396-03-26fa_IR
dc.identifier.citationHusseinzadeh Kashan, Ali, Eyvazi, Mohammad, Abbasi-Pooya, Amin. (2020). An effective league championship algorithm for the stochastic multi-period portfolio optimization problem. Scientia Iranica, 27(2), 829-845. doi: 10.24200/sci.2018.20995en_US
dc.identifier.issn1026-3098
dc.identifier.issn2345-3605
dc.identifier.urihttps://dx.doi.org/10.24200/sci.2018.20995
dc.identifier.urihttp://scientiairanica.sharif.edu/article_20995.html
dc.identifier.urihttps://iranjournals.nlai.ir/handle/123456789/118668
dc.description.abstractThe multi-period portfolio optimization models were introduced to overcome the weaknesses of the single-period models via considering a dynamic optimization system. However, due to the nonlinear nature of the problem and rapid growth of the size complexity with increasing the number of periods and scenarios, this study is devoted to developing a novel league championship algorithm (LCA) to maximize the portfolio's mean-variance function subject to different constraints. A Vector Auto Regression model is also developed to estimate the return on risky assets in different time periods and to simulate different scenarios of the rate of return accordingly. Besides, we proved a valid upper bound of the objective function based on the idea of using surrogate relaxation of constraints. Our computational results based on sample data collected from S&P 500 and 10-year T. Bond indices indicate that the quality of portfolios, in terms of the mean-variance measure, obtained by LCA is 10 to 20 percent better than those of the commercial software. This sounds promising that our method can be a suitable tool for solving a variety of portfolio optimization problems.en_US
dc.format.extent4933
dc.format.mimetypeapplication/pdf
dc.languageEnglish
dc.language.isoen_US
dc.publisherSharif University of Technologyen_US
dc.relation.ispartofScientia Iranicaen_US
dc.relation.isversionofhttps://dx.doi.org/10.24200/sci.2018.20995
dc.subjectportfolio optimizationen_US
dc.subjectsingle and multi-period modelsen_US
dc.subjectleague championship algorithmen_US
dc.subjectIndustrial Engineeringen_US
dc.titleAn effective league championship algorithm for the stochastic multi-period portfolio optimization problemen_US
dc.typeTexten_US
dc.typeArticleen_US
dc.contributor.departmentFaculty of Industrial and Systems Engineering, Tarbiat Modares University, Tehran, P.O. Box 14115-111, Iran.en_US
dc.contributor.departmentFaculty of Industrial and Systems Engineering, Tarbiat Modares University, Tehran, P.O. Box 14115-111, Iran.en_US
dc.contributor.departmentFaculty of Industrial and Systems Engineering, Tarbiat Modares University, Tehran, P.O. Box 14115-111, Iran.en_US
dc.citation.volume27
dc.citation.issue2
dc.citation.spage829
dc.citation.epage845


فایل‌های این مورد

Thumbnail

این مورد در مجموعه‌های زیر وجود دارد:

نمایش مختصر رکورد