| dc.contributor.author | Ali, Asma | en_US |
| dc.contributor.author | Ahmad, Bakhtiyar | en_US |
| dc.date.accessioned | 1403-12-21T00:10:51Z | fa_IR |
| dc.date.accessioned | 2025-03-11T00:10:51Z | |
| dc.date.available | 1403-12-21T00:10:51Z | fa_IR |
| dc.date.available | 2025-03-11T00:10:51Z | |
| dc.date.issued | 2025-07-01 | en_US |
| dc.date.issued | 1404-04-10 | fa_IR |
| dc.date.submitted | 2023-06-02 | en_US |
| dc.date.submitted | 1402-03-12 | fa_IR |
| dc.identifier.citation | Ali, Asma, Ahmad, Bakhtiyar. (2025). ON THE NILPOTENT DOT PRODUCT GRAPH OF A COMMUTATIVE RING. Journal of Algebraic Systems, 13(2), 169-177. doi: 10.22044/jas.2023.13207.1726 | en_US |
| dc.identifier.issn | 2345-5128 | |
| dc.identifier.issn | 2345-511X | |
| dc.identifier.uri | https://dx.doi.org/10.22044/jas.2023.13207.1726 | |
| dc.identifier.uri | https://jas.shahroodut.ac.ir/article_3120.html | |
| dc.identifier.uri | https://iranjournals.nlai.ir/handle/123456789/1138061 | |
| dc.description.abstract | Let $\mathscr{B}$ be a commutative ring with $1\neq 0$, $1\leq m<\infty$ be an integer and $\mathcal{R}=\mathscr{B}\times \mathscr{B}\times \cdot \cdot \cdot \times \mathscr{B}$ ($m$ times). In this paper, we introduce two types of (undirected) graphs, total nilpotent dot product graph denoted by $\mathcal{T_{N}D(\mathcal{R})}$ and nilpotent dot product graph denoted by $\mathcal{Z_ND(\mathcal{R})}$, in which vertices are from $\mathcal{R}^\ast = \mathcal{R}\setminus \{(0,0,...,0)\}$ and $\mathcal{Z_{N}(\mathcal{R})}^*$ respectively, where $\mathcal{Z_{N}(\mathcal{R})}^{*}=\{w\in \mathcal{R}^*| wz\in \mathcal{N(R)}, \mbox{for some }z\in \mathcal{R}^*\} $. Two distinct vertices $w=(w_1,w_2,...,w_m)$ and $z=(z_1,z_2,...,z_m)$ are said to be adjacent if and only if $w\cdot z\in \mathcal{N}(\mathscr{B})$ (where $w\cdot z=w_1z_1+\cdots+w_mz_m$, denotes the normal dot product and $\mathcal{N}(\mathscr{B})$ is the set of nilpotent elements of $\mathscr{B}$). We study about connectedness, diameter and girth of the graphs $\mathcal{T_ND(R)}$ and $\mathcal{Z_ND(R)}$. Finally, we establish the relationship between $\mathcal{T_ND(R)}$, $\mathcal{Z_ND(R)}$, $\mathcal{TD(R)}$ and $\mathcal{ZD(R)}$. | en_US |
| dc.language | English | |
| dc.language.iso | en_US | |
| dc.publisher | Shahrood University of Technology | en_US |
| dc.relation.ispartof | Journal of Algebraic Systems | en_US |
| dc.relation.isversionof | https://dx.doi.org/10.22044/jas.2023.13207.1726 | |
| dc.subject | Dot product graph | en_US |
| dc.subject | Nilpotent graph | en_US |
| dc.subject | Reduced ring | en_US |
| dc.title | ON THE NILPOTENT DOT PRODUCT GRAPH OF A COMMUTATIVE RING | en_US |
| dc.type | Text | en_US |
| dc.type | Original Manuscript | en_US |
| dc.contributor.department | Department of Mathematics, Aligarh Muslim University, Aligarh-202002, India. | en_US |
| dc.contributor.department | Department of Mathematics, Aligarh Muslim University, Aligarh-202002, India. | en_US |
| dc.citation.volume | 13 | |
| dc.citation.issue | 2 | |
| dc.citation.spage | 169 | |
| dc.citation.epage | 177 | |