نمایش مختصر رکورد

dc.contributor.authorKoike, Hirokien_US
dc.contributor.authorKovacs, Istvanen_US
dc.date.accessioned1399-07-08T21:24:56Zfa_IR
dc.date.accessioned2020-09-29T21:24:56Z
dc.date.available1399-07-08T21:24:56Zfa_IR
dc.date.available2020-09-29T21:24:56Z
dc.date.issued2019-06-01en_US
dc.date.issued1398-03-11fa_IR
dc.date.submitted2016-12-05en_US
dc.date.submitted1395-09-15fa_IR
dc.identifier.citationKoike, Hiroki, Kovacs, Istvan. (2019). A classification of nilpotent $3$-BCI groups. International Journal of Group Theory, 8(2), 11-24. doi: 10.22108/ijgt.2017.100795.1404en_US
dc.identifier.issn2251-7650
dc.identifier.issn2251-7669
dc.identifier.urihttps://dx.doi.org/10.22108/ijgt.2017.100795.1404
dc.identifier.urihttp://ijgt.ui.ac.ir/article_22202.html
dc.identifier.urihttps://iranjournals.nlai.ir/handle/123456789/109806
dc.description.abstract‎‎Given a finite group $G$ and a subset $Ssubseteq G,$ the bi-Cayley graph $bcay(G,S)$ is the graph whose vertex‎ ‎set is $G times {0,1}$ and edge set is‎ ‎${ {(x,0),(s x,1)}‎ : ‎x in G‎, ‎sin S }$‎. ‎A bi-Cayley graph $bcay(G,S)$ is called a BCI-graph if for any bi-Cayley graph‎ ‎$bcay(G,T),$ $bcay(G,S) cong bcay(G,T)$ implies that $T = g S^alpha$ for some $g in G$ and $alpha in aut(G)$‎. ‎A group $G$ is called an $m$-BCI-group if all bi-Cayley graphs of $G$ of valency at most $m$ are BCI-graphs‎. ‎It was proved by Jin and Liu that‎, ‎if $G$ is a $3$-BCI-group‎, ‎then its Sylow $2$-subgroup is cyclic‎, ‎or elementary abelian‎, ‎or $Q$ [European J‎. ‎Combin‎. ‎31 (2010)‎ ‎1257--1264]‎, ‎and that a Sylow $p$-subgroup‎, ‎$p$ is an odd prime‎, ‎is homocyclic [Util‎. ‎Math‎. ‎86 (2011) 313--320]‎. ‎In this paper we show that the converse also holds in the‎ ‎case when $G$ is nilpotent‎, ‎and hence complete the classification of‎ ‎nilpotent $3$-BCI-groups‎.en_US
dc.format.extent244
dc.format.mimetypeapplication/pdf
dc.languageEnglish
dc.language.isoen_US
dc.publisherUniversity of Isfahanen_US
dc.relation.ispartofInternational Journal of Group Theoryen_US
dc.relation.isversionofhttps://dx.doi.org/10.22108/ijgt.2017.100795.1404
dc.subject‎bi-Cayley graph‎en_US
dc.subject‎BCI-group‎en_US
dc.subject‎graph isomorphismen_US
dc.subject05C25 Graphs and abstract algebra (groups, rings, fields, etc.)en_US
dc.titleA classification of nilpotent $3$-BCI groupsen_US
dc.typeTexten_US
dc.typeResearch Paperen_US
dc.contributor.departmentNational Autonomous University of Mexicoen_US
dc.contributor.departmentUniversity of Primorskaen_US
dc.citation.volume8
dc.citation.issue2
dc.citation.spage11
dc.citation.epage24


فایل‌های این مورد

Thumbnail

این مورد در مجموعه‌های زیر وجود دارد:

نمایش مختصر رکورد