| dc.contributor.author | Koike, Hiroki | en_US |
| dc.contributor.author | Kovacs, Istvan | en_US |
| dc.date.accessioned | 1399-07-08T21:24:56Z | fa_IR |
| dc.date.accessioned | 2020-09-29T21:24:56Z | |
| dc.date.available | 1399-07-08T21:24:56Z | fa_IR |
| dc.date.available | 2020-09-29T21:24:56Z | |
| dc.date.issued | 2019-06-01 | en_US |
| dc.date.issued | 1398-03-11 | fa_IR |
| dc.date.submitted | 2016-12-05 | en_US |
| dc.date.submitted | 1395-09-15 | fa_IR |
| dc.identifier.citation | Koike, Hiroki, Kovacs, Istvan. (2019). A classification of nilpotent $3$-BCI groups. International Journal of Group Theory, 8(2), 11-24. doi: 10.22108/ijgt.2017.100795.1404 | en_US |
| dc.identifier.issn | 2251-7650 | |
| dc.identifier.issn | 2251-7669 | |
| dc.identifier.uri | https://dx.doi.org/10.22108/ijgt.2017.100795.1404 | |
| dc.identifier.uri | http://ijgt.ui.ac.ir/article_22202.html | |
| dc.identifier.uri | https://iranjournals.nlai.ir/handle/123456789/109806 | |
| dc.description.abstract | Given a finite group $G$ and a subset $Ssubseteq G,$ the bi-Cayley graph $bcay(G,S)$ is the graph whose vertex set is $G times {0,1}$ and edge set is ${ {(x,0),(s x,1)} : x in G, sin S }$. A bi-Cayley graph $bcay(G,S)$ is called a BCI-graph if for any bi-Cayley graph $bcay(G,T),$ $bcay(G,S) cong bcay(G,T)$ implies that $T = g S^alpha$ for some $g in G$ and $alpha in aut(G)$. A group $G$ is called an $m$-BCI-group if all bi-Cayley graphs of $G$ of valency at most $m$ are BCI-graphs. It was proved by Jin and Liu that, if $G$ is a $3$-BCI-group, then its Sylow $2$-subgroup is cyclic, or elementary abelian, or $Q$ [European J. Combin. 31 (2010) 1257--1264], and that a Sylow $p$-subgroup, $p$ is an odd prime, is homocyclic [Util. Math. 86 (2011) 313--320]. In this paper we show that the converse also holds in the case when $G$ is nilpotent, and hence complete the classification of nilpotent $3$-BCI-groups. | en_US |
| dc.format.extent | 244 | |
| dc.format.mimetype | application/pdf | |
| dc.language | English | |
| dc.language.iso | en_US | |
| dc.publisher | University of Isfahan | en_US |
| dc.relation.ispartof | International Journal of Group Theory | en_US |
| dc.relation.isversionof | https://dx.doi.org/10.22108/ijgt.2017.100795.1404 | |
| dc.subject | bi-Cayley graph | en_US |
| dc.subject | BCI-group | en_US |
| dc.subject | graph isomorphism | en_US |
| dc.subject | 05C25 Graphs and abstract algebra (groups, rings, fields, etc.) | en_US |
| dc.title | A classification of nilpotent $3$-BCI groups | en_US |
| dc.type | Text | en_US |
| dc.type | Research Paper | en_US |
| dc.contributor.department | National Autonomous University of Mexico | en_US |
| dc.contributor.department | University of Primorska | en_US |
| dc.citation.volume | 8 | |
| dc.citation.issue | 2 | |
| dc.citation.spage | 11 | |
| dc.citation.epage | 24 | |