نمایش مختصر رکورد

dc.contributor.authorرضایی, منصورfa_IR
dc.contributor.authorرضایی, منصورfa_IR
dc.contributor.authorفخری, نگینfa_IR
dc.contributor.authorفخری, نگینfa_IR
dc.contributor.authorرجعتی, فاطمهfa_IR
dc.contributor.authorرجعتی, فاطمهfa_IR
dc.contributor.authorشهسواری, سودهfa_IR
dc.contributor.authorشهسواری, سودهfa_IR
dc.date.accessioned1399-12-03T21:06:49Zfa_IR
dc.date.accessioned2021-02-21T21:06:49Z
dc.date.available1399-12-03T21:06:49Zfa_IR
dc.date.available2021-02-21T21:06:49Z
dc.date.issued2019-09-01en_US
dc.date.issued1398-06-10fa_IR
dc.identifier.citationرضایی, منصور, رضایی, منصور, فخری, نگین, فخری, نگین, رجعتی, فاطمه, رجعتی, فاطمه, شهسواری, سوده, شهسواری, سوده. (1398). مقایسه پیش‌بینی ابتلا به دیابت بارداری با مدل‌های شبکه عصبی مصنوعی و درخت تصمیم. مجله دانشکده پزشکی، دانشگاه علوم پزشکی تهران, 77(6), 359-367.fa_IR
dc.identifier.issn1683-1764
dc.identifier.issn1735-7322
dc.identifier.urihttp://tumj.tums.ac.ir/article-1-9923-other.html
dc.identifier.urihttps://iranjournals.nlai.ir/handle/123456789/758801
dc.description.abstractزمینه و هدف: دیابت بارداری از شایعترین اختلالات متابولیک بارداری است که با عوارض خطرناکی همراه است. در صورت تشخیص زودرس آن می‌توان از برخی عوارض مادری و جنینی جلوگیری کرد. هدف این پژوهش پیش‌بینی زودرس دیابت بارداری توسط مدل‌های آماری شبکه عصبی مصنوعی و درخت تصمیم و نیز مقایسه این مدل‌ها در تشخیص دیابت بارداری بود. روش بررسی: در این مطالعه مدلسازی، از پرونده‌های زنان باردار در مراکز بهداشتی شهر کرمانشاه (۱۳۹۱-۱۳۸۹)، ۴۰۰ پرونده که بدون داده‌های گمشده بود بررسی شد. اطلاعات دموگرافیک، رتبه بارداری، دیابت، پارامترهای باروری و نتایج آزمایشات از پرونده آنان گردآوری شد. مدل‌های شبکه عصبی مصنوعی پرسپترون و درخت تصمیم به داده‌ها برازش داده شد و عملکرد آن‌ها با هم مقایسه گردید. براساس معیارهای صحت، حساسیت، ویژگی و سطح زیر منحنی راک (Receiver operating characteristic, ROC)، مدل برتر معرفی شد. یافته‌ها: پس از برازش مدل‌های شبکه عصبی مصنوعی و درخت تصمیم، مقادیر معیارها محاسبه شد. مقدار تمام معیارها در شبکه عصبی بیشتر از درخت تصمیم بود. به‌ترتیب برای مدل‌های یادشده، صحت برابر ۰/۸۳ و ۰/۷۷، حساسیت ۰/۶۲ و ۰/۵۶، ویژگی ۰/۹۵ و ۰/۸۷ بود. سطح زیر منحنی راک مدل شبکه عصبی به‌طور معناداری بیشتر از درخت تصمیم بود (۰/۷۹، ۰/۷۴ و ۰/۰۳P=). نتیجه‌گیری: در پیش‌بینی دیابت بارداری، مدل شبکه عصبی مصنوعی دارای صحت، حساسیت، ویژگی و سطح زیر منحنی راک بالاتری نسبت به درخت تصمیم بود. می‌توان نتیجه گرفت که مدل شبکه عصبی مصنوعی پرسپترون دارای پیش‌بینی‌های صحیح‌تر و نزدیک‌تر به واقعیت نسبت به درخت تصمیم است.fa_IR
dc.languageفارسی
dc.language.isofa_IR
dc.publisherدانشگاه علوم پزشکی تهرانfa_IR
dc.relation.ispartofمجله دانشکده پزشکی، دانشگاه علوم پزشکی تهرانfa_IR
dc.relation.ispartofTehran University Medical Journalen_US
dc.subjectدیابت بارداریfa_IR
dc.subjectشبکه عصبی مصنوعیfa_IR
dc.subjectدرخت تصمیمfa_IR
dc.subjectصحتfa_IR
dc.subjectحساسیتfa_IR
dc.titleمقایسه پیش‌بینی ابتلا به دیابت بارداری با مدل‌های شبکه عصبی مصنوعی و درخت تصمیمfa_IR
dc.typeTexten_US
dc.typeمقاله اصیلfa_IR
dc.contributor.departmentگروه آمار زیستی، مرکز تحقیقات توسعه اجتماعی و ارتقاء سلامت، دانشکده بهداشت، دانشگاه علوم پزشکی کرمانشاه، کرمانشاه، ایران.fa_IR
dc.contributor.departmentگروه آمار زیستی، مرکز تحقیقات توسعه اجتماعی و ارتقاء سلامت، دانشکده بهداشت، دانشگاه علوم پزشکی کرمانشاه، کرمانشاه، ایران.fa_IR
dc.contributor.departmentگروه آمار زیستی، کمیته تحقیقات دانشجویی، دانشکده بهداشت، دانشگاه علوم پزشکی کرمانشاه، کرمانشاه، ایران.fa_IR
dc.contributor.departmentگروه آمار زیستی، کمیته تحقیقات دانشجویی، دانشکده بهداشت، دانشگاه علوم پزشکی کرمانشاه، کرمانشاه، ایران.fa_IR
dc.contributor.departmentمرکز تحقیقات عوامل محیطی موثر بر سلامت، پژوهشکده سلامت، دانشگاه علوم پزشکی کرمانشاه، کرمانشاه، ایران.fa_IR
dc.contributor.departmentمرکز تحقیقات عوامل محیطی موثر بر سلامت، پژوهشکده سلامت، دانشگاه علوم پزشکی کرمانشاه، کرمانشاه، ایران.fa_IR
dc.contributor.departmentگروه فناوری اطلاعات سلامت، دانشکده پیراپزشکی، دانشگاه علوم پزشکی کرمانشاه، کرمانشاه، ایران.fa_IR
dc.contributor.departmentگروه فناوری اطلاعات سلامت، دانشکده پیراپزشکی، دانشگاه علوم پزشکی کرمانشاه، کرمانشاه، ایران.fa_IR
dc.citation.volume77
dc.citation.issue6
dc.citation.spage359
dc.citation.epage367


فایل‌های این مورد

فایل‌هااندازهقالبمشاهده

فایلی با این مورد مرتبط نشده است.

این مورد در مجموعه‌های زیر وجود دارد:

نمایش مختصر رکورد