مقایسه پیشبینی ابتلا به دیابت بارداری با مدلهای شبکه عصبی مصنوعی و درخت تصمیم
(ندگان)پدیدآور
رضایی, منصوررضایی, منصورفخری, نگینفخری, نگینرجعتی, فاطمهرجعتی, فاطمهشهسواری, سودهشهسواری, سوده
نوع مدرک
Textمقاله اصیل
زبان مدرک
فارسیچکیده
زمینه و هدف: دیابت بارداری از شایعترین اختلالات متابولیک بارداری است که با عوارض خطرناکی همراه است. در صورت تشخیص زودرس آن میتوان از برخی عوارض مادری و جنینی جلوگیری کرد. هدف این پژوهش پیشبینی زودرس دیابت بارداری توسط مدلهای آماری شبکه عصبی مصنوعی و درخت تصمیم و نیز مقایسه این مدلها در تشخیص دیابت بارداری بود.
روش بررسی: در این مطالعه مدلسازی، از پروندههای زنان باردار در مراکز بهداشتی شهر کرمانشاه (۱۳۹۱-۱۳۸۹)، ۴۰۰ پرونده که بدون دادههای گمشده بود بررسی شد. اطلاعات دموگرافیک، رتبه بارداری، دیابت، پارامترهای باروری و نتایج آزمایشات از پرونده آنان گردآوری شد. مدلهای شبکه عصبی مصنوعی پرسپترون و درخت تصمیم به دادهها برازش داده شد و عملکرد آنها با هم مقایسه گردید. براساس معیارهای صحت، حساسیت، ویژگی و سطح زیر منحنی راک (Receiver operating characteristic, ROC)، مدل برتر معرفی شد.
یافتهها: پس از برازش مدلهای شبکه عصبی مصنوعی و درخت تصمیم، مقادیر معیارها محاسبه شد. مقدار تمام معیارها در شبکه عصبی بیشتر از درخت تصمیم بود. بهترتیب برای مدلهای یادشده، صحت برابر ۰/۸۳ و ۰/۷۷، حساسیت ۰/۶۲ و ۰/۵۶، ویژگی ۰/۹۵ و ۰/۸۷ بود. سطح زیر منحنی راک مدل شبکه عصبی بهطور معناداری بیشتر از درخت تصمیم بود (۰/۷۹، ۰/۷۴ و ۰/۰۳P=).
نتیجهگیری: در پیشبینی دیابت بارداری، مدل شبکه عصبی مصنوعی دارای صحت، حساسیت، ویژگی و سطح زیر منحنی راک بالاتری نسبت به درخت تصمیم بود. میتوان نتیجه گرفت که مدل شبکه عصبی مصنوعی پرسپترون دارای پیشبینیهای صحیحتر و نزدیکتر به واقعیت نسبت به درخت تصمیم است.
کلید واژگان
دیابت بارداریشبکه عصبی مصنوعی
درخت تصمیم
صحت
حساسیت
شماره نشریه
6تاریخ نشر
2019-09-011398-06-10
ناشر
دانشگاه علوم پزشکی تهرانسازمان پدید آورنده
گروه آمار زیستی، مرکز تحقیقات توسعه اجتماعی و ارتقاء سلامت، دانشکده بهداشت، دانشگاه علوم پزشکی کرمانشاه، کرمانشاه، ایران.گروه آمار زیستی، مرکز تحقیقات توسعه اجتماعی و ارتقاء سلامت، دانشکده بهداشت، دانشگاه علوم پزشکی کرمانشاه، کرمانشاه، ایران.
گروه آمار زیستی، کمیته تحقیقات دانشجویی، دانشکده بهداشت، دانشگاه علوم پزشکی کرمانشاه، کرمانشاه، ایران.
گروه آمار زیستی، کمیته تحقیقات دانشجویی، دانشکده بهداشت، دانشگاه علوم پزشکی کرمانشاه، کرمانشاه، ایران.
مرکز تحقیقات عوامل محیطی موثر بر سلامت، پژوهشکده سلامت، دانشگاه علوم پزشکی کرمانشاه، کرمانشاه، ایران.
مرکز تحقیقات عوامل محیطی موثر بر سلامت، پژوهشکده سلامت، دانشگاه علوم پزشکی کرمانشاه، کرمانشاه، ایران.
گروه فناوری اطلاعات سلامت، دانشکده پیراپزشکی، دانشگاه علوم پزشکی کرمانشاه، کرمانشاه، ایران.
گروه فناوری اطلاعات سلامت، دانشکده پیراپزشکی، دانشگاه علوم پزشکی کرمانشاه، کرمانشاه، ایران.
شاپا
1683-17641735-7322



