نمایش مختصر رکورد

dc.contributor.authorFattahi, Hadien_US
dc.contributor.authorBayatzadehfard, Zohrehen_US
dc.date.accessioned1399-08-23T06:10:01Zfa_IR
dc.date.accessioned2020-11-13T06:10:02Z
dc.date.available1399-08-23T06:10:01Zfa_IR
dc.date.available2020-11-13T06:10:02Z
dc.date.issued2019-05-01en_US
dc.date.issued1398-02-11fa_IR
dc.identifier.citation(1398). نشریه زمین شناسی مهندسی, 12(5), 55-84. doi: 10.18869/acadpub.jeg.12.5.55fa_IR
dc.identifier.issn2228-6837
dc.identifier.issn7386-8222
dc.identifier.urihttps://dx.doi.org/10.18869/acadpub.jeg.12.5.55
dc.identifier.urihttp://jeg.khu.ac.ir/article-1-2583-en.html
dc.identifier.urihttps://iranjournals.nlai.ir/handle/123456789/580772
dc.description.abstractMaximum surface settlement (MSS) is an important parameter for the design and operation of earth pressure balance (EPB) shields that should determine before operate tunneling. Artificial intelligence (AI) methods are accepted as a technology that offers an alternative way to tackle highly complex problems that can’t be modeled in mathematics. They can learn from examples and they are able to handle incomplete data and noisy. The adaptive network–based fuzzy inference system (ANFIS) and hybrid artificial neural network (ANN) with biogeography-based optimization algorithm (ANN-BBO) are kinds of AI systems that were used in this study to build a prediction model for the MSS caused by EPB shield tunneling. Two ANFIS models were implemented, ANFIS-subtractive clustering method (ANFIS-SCM) and ANFIS-fuzzy c–means clustering method (ANFIS-FCM). The estimation abilities offered using three models were presented by using field data of achieved from Bangkok Subway Project in Thailand. In these models, depth, distance from shaft, ground water level from tunnel invert, average face pressure, average penetrate rate, pitching angle, tail void grouting pressure and percent tail void grout filling were utilized as the input parameters, while the MSS was the output parameter. To compare the performance of models for MSS prediction, the coefficient of correlation (R2) and mean square error (MSE) of the models were calculated, indicating the good performance of the ANFIS-SCM model.en_US
dc.format.extent1390
dc.format.mimetypeapplication/pdf
dc.languageEnglish
dc.language.isoen_US
dc.publisherدانشگاه خوارزمیfa_IR
dc.relation.ispartofنشریه زمین شناسی مهندسیfa_IR
dc.relation.ispartofJournal of Engineering Geologyen_US
dc.relation.isversionofhttps://dx.doi.org/10.18869/acadpub.jeg.12.5.55
dc.subjectMaximum surface settlementen_US
dc.subjectEPB shielden_US
dc.subjectShield tunnelingen_US
dc.subjectAdaptive network–based fuzzy inference systemen_US
dc.subjectArtificial neural networken_US
dc.subjectBiogeography-based optimization algorithm.en_US
dc.subjectGeotecnicen_US
dc.titleForecasting Surface Settlement Caused by Shield Tunneling Using ANN-BBO Model and ANFIS Based on Clustering Methodsen_US
dc.typeTexten_US
dc.typeOriginal Manuscripten_US
dc.contributor.departmentDepartment of Mining Engineering, Arak University of Technology, Arak, Iranen_US
dc.contributor.departmentDepartment of Mining Engineering, Arak University of Technology, Arak, Iranen_US
dc.citation.volume12
dc.citation.issue5
dc.citation.spage55
dc.citation.epage84


فایل‌های این مورد

Thumbnail

این مورد در مجموعه‌های زیر وجود دارد:

نمایش مختصر رکورد