• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات فارسی
    • نشریه زمین شناسی مهندسی
    • دوره 12, شماره 5
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات فارسی
    • نشریه زمین شناسی مهندسی
    • دوره 12, شماره 5
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Forecasting Surface Settlement Caused by Shield Tunneling Using ANN-BBO Model and ANFIS Based on Clustering Methods

    (ندگان)پدیدآور
    Fattahi, HadiBayatzadehfard, Zohreh
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    1.357 مگابایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Original Manuscript
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Maximum surface settlement (MSS) is an important parameter for the design and operation of earth pressure balance (EPB) shields that should determine before operate tunneling. Artificial intelligence (AI) methods are accepted as a technology that offers an alternative way to tackle highly complex problems that can’t be modeled in mathematics. They can learn from examples and they are able to handle incomplete data and noisy. The adaptive network–based fuzzy inference system (ANFIS) and hybrid artificial neural network (ANN) with biogeography-based optimization algorithm (ANN-BBO) are kinds of AI systems that were used in this study to build a prediction model for the MSS caused by EPB shield tunneling. Two ANFIS models were implemented, ANFIS-subtractive clustering method (ANFIS-SCM) and ANFIS-fuzzy c–means clustering method (ANFIS-FCM). The estimation abilities offered using three models were presented by using field data of achieved from Bangkok Subway Project in Thailand. In these models, depth, distance from shaft, ground water level from tunnel invert, average face pressure, average penetrate rate, pitching angle, tail void grouting pressure and percent tail void grout filling were utilized as the input parameters, while the MSS was the output parameter. To compare the performance of models for MSS prediction, the coefficient of correlation (R2) and mean square error (MSE) of the models were calculated, indicating the good performance of the ANFIS-SCM model.
    کلید واژگان
    Maximum surface settlement
    EPB shield
    Shield tunneling
    Adaptive network–based fuzzy inference system
    Artificial neural network
    Biogeography-based optimization algorithm.
    Geotecnic

    شماره نشریه
    5
    تاریخ نشر
    2019-05-01
    1398-02-11
    ناشر
    دانشگاه خوارزمی
    سازمان پدید آورنده
    Department of Mining Engineering, Arak University of Technology, Arak, Iran
    Department of Mining Engineering, Arak University of Technology, Arak, Iran

    شاپا
    2228-6837
    7386-8222
    URI
    https://dx.doi.org/10.18869/acadpub.jeg.12.5.55
    http://jeg.khu.ac.ir/article-1-2583-en.html
    https://iranjournals.nlai.ir/handle/123456789/580772

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب