نمایش مختصر رکورد

dc.contributor.authormoosavi, seyed hameden_US
dc.contributor.authorSharifzadeh, Men_US
dc.date.accessioned1399-08-23T06:08:50Zfa_IR
dc.date.accessioned2020-11-13T06:08:51Z
dc.date.available1399-08-23T06:08:50Zfa_IR
dc.date.available2020-11-13T06:08:51Z
dc.date.issued2017-05-01en_US
dc.date.issued1396-02-11fa_IR
dc.identifier.citation(1396). نشریه زمین شناسی مهندسی, 10(4), 3793-3808. doi: 10.18869/acadpub.jeg.10.4.3793fa_IR
dc.identifier.issn2228-6837
dc.identifier.issn7386-8222
dc.identifier.urihttps://dx.doi.org/10.18869/acadpub.jeg.10.4.3793
dc.identifier.urihttp://jeg.khu.ac.ir/article-1-2461-en.html
dc.identifier.urihttps://iranjournals.nlai.ir/handle/123456789/580706
dc.description.abstractCombination of Adoptive Network based Fuzzy Inference System (ANFIS) and subtractive clustering (SC) has been used for estimation of deformation modulus (Em) and rock mass strength (UCSm) considering depth of measurement. To do this, learning of the ANFIS based subtractive clustering (ANFISBSC) was performed firstly on 125 measurements of 9 variables such as rock mass strength (UCSm), deformation modulus (Em), depth, spacing, persistence, aperture, intact rock strength (UCSi), geomechanical rating (RMR) and elastic modulus (Ei). Then, at second phase, testing the trained ANFISBSC structure has been perfomed on 40 data measurements. Therefore, predictive rock mass models have been developed for 2-6 variables where model complexity influences the estimation accuracy. Results of multivariate simulation of rock mass for estimating UCSm and Em have shown that accuracy of the ANFISBSC method increases coincident with development of model from 2 variables to 6 variables. According to the results, 3-variable model of ANFISBSC method has general estimation of both UCSm and Em corresponding with 20% to 30% error while the results of multivariate analysis are successfully improved by 6-variable model with error of less than 3%. Also, dip of the fitted line on data point of measured and estimated UCSm and Em for 6-variable model approaches about 1 respect to 0.94 for 3- variable model. Therefore, it can be concluded that 6-variable model of ANFISBSC gives reasonable prediction of UCSm and Em.en_US
dc.format.extent897
dc.format.mimetypeapplication/pdf
dc.languageEnglish
dc.language.isoen_US
dc.publisherدانشگاه خوارزمیfa_IR
dc.relation.ispartofنشریه زمین شناسی مهندسیfa_IR
dc.relation.ispartofJournal of Engineering Geologyen_US
dc.relation.isversionofhttps://dx.doi.org/10.18869/acadpub.jeg.10.4.3793
dc.subjectANFISen_US
dc.subjectSubtractive clusteringen_US
dc.subjectRock mass carachteristicsen_US
dc.subjectDeformation modulusen_US
dc.subjectRock mass compressive strengthen_US
dc.subjectMultivariate modelen_US
dc.subjectKhorramabad-Polezal.en_US
dc.subjectGeotecnicen_US
dc.titleMultivariate Estimation of Rock Mass Characteristics Respect to Depth Using ANFIS Based Subtractive Clustering- Khorramabad- Polezal Freeway Tunnelsen_US
dc.typeTexten_US
dc.typeResearch Paperen_US
dc.contributor.departmentEngineeren_US
dc.contributor.departmentFaculty of Mining Eng, Mining and Metallurgy, Amirkabir University of Technologyen_US
dc.citation.volume10
dc.citation.issue4
dc.citation.spage3793
dc.citation.epage3808


فایل‌های این مورد

Thumbnail

این مورد در مجموعه‌های زیر وجود دارد:

نمایش مختصر رکورد