• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات فارسی
    • نشریه زمین شناسی مهندسی
    • دوره 10, شماره 4
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات فارسی
    • نشریه زمین شناسی مهندسی
    • دوره 10, شماره 4
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Multivariate Estimation of Rock Mass Characteristics Respect to Depth Using ANFIS Based Subtractive Clustering- Khorramabad- Polezal Freeway Tunnels

    (ندگان)پدیدآور
    moosavi, seyed hamedSharifzadeh, M
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    897.3کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Research Paper
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Combination of Adoptive Network based Fuzzy Inference System (ANFIS) and subtractive clustering (SC) has been used for estimation of deformation modulus (Em) and rock mass strength (UCSm) considering depth of measurement. To do this, learning of the ANFIS based subtractive clustering (ANFISBSC) was performed firstly on 125 measurements of 9 variables such as rock mass strength (UCSm), deformation modulus (Em), depth, spacing, persistence, aperture, intact rock strength (UCSi), geomechanical rating (RMR) and elastic modulus (Ei). Then, at second phase, testing the trained ANFISBSC structure has been perfomed on 40 data measurements. Therefore, predictive rock mass models have been developed for 2-6 variables where model complexity influences the estimation accuracy. Results of multivariate simulation of rock mass for estimating UCSm and Em have shown that accuracy of the ANFISBSC method increases coincident with development of model from 2 variables to 6 variables. According to the results, 3-variable model of ANFISBSC method has general estimation of both UCSm and Em corresponding with 20% to 30% error while the results of multivariate analysis are successfully improved by 6-variable model with error of less than 3%. Also, dip of the fitted line on data point of measured and estimated UCSm and Em for 6-variable model approaches about 1 respect to 0.94 for 3- variable model. Therefore, it can be concluded that 6-variable model of ANFISBSC gives reasonable prediction of UCSm and Em.
    کلید واژگان
    ANFIS
    Subtractive clustering
    Rock mass carachteristics
    Deformation modulus
    Rock mass compressive strength
    Multivariate model
    Khorramabad-Polezal.
    Geotecnic

    شماره نشریه
    4
    تاریخ نشر
    2017-05-01
    1396-02-11
    ناشر
    دانشگاه خوارزمی
    سازمان پدید آورنده
    Engineer
    Faculty of Mining Eng, Mining and Metallurgy, Amirkabir University of Technology

    شاپا
    2228-6837
    7386-8222
    URI
    https://dx.doi.org/10.18869/acadpub.jeg.10.4.3793
    http://jeg.khu.ac.ir/article-1-2461-en.html
    https://iranjournals.nlai.ir/handle/123456789/580706

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب