• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات فارسی
    • نشریه زمین شناسی مهندسی
    • دوره 16, شماره 1
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات فارسی
    • نشریه زمین شناسی مهندسی
    • دوره 16, شماره 1
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Predicting the Young's Modulus and Uniaxial Compressive Strength of a typical limestone using the Principal Component Regression and Particle Swarm Optimization

    (ندگان)پدیدآور
    Mokhtari, maryam
    Thumbnail
    نوع مدرک
    Text
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    In geotechnical engineering, rock mechanics and engineering geology, depending on the project design, uniaxial strength and static Youngchr('39')s modulus of rocks are of vital importance. The direct determination of the aforementioned parameters in the laboratory, however, requires intact and high-quality cores and preparation of their specimens have some limitations. Moreover, performing these tests is time-consuming and costly. Therefore, in this study, it was tried to precisely predict the desirable parameters using physical characteristics and ultrasonic tests. To do so, two methods, i.e. principal components regression and support vector regression, were employed. The parameters used in modelling included density, P- wave velocity, dynamic Poisson’s ratio and porosity. Accordingly, the experimental results conducted on 115 limestone rock samples, including uniaxial compressive and ultrasonic tests, were used and the desired parameters in the modelling were extracted using the laboratory results. By means of correlation coefficient (R2), normalized mean square error (NMSE) and Mean absolute error (MAE), the developed models were validated and their accuracy were evaluated. The obtained results showed that both methods could estimate the target parameters with high accuracy. In support vector regression, Particle Swarm Optimization method was used for determining optimal values of box constraint mode and epsilon mode, and the modelling was conducted using four kernel functions, including linear, quadratic, cubic and Gaussian. Here, the quadratic kernel function yielded the best result for UCS and cubic kernel function yielded the best result for Es. In addition, comparing the results of the principal components regression and the support vector regression indicated that the latter outperformed the former.
    کلید واژگان
    Uniaxial compressive strength
    Static young’s module
    Support vector regression
    Principal components regression
    Ultrasonic test
    Geotecnic

    شماره نشریه
    1
    تاریخ نشر
    2022-10-01
    1401-07-09
    ناشر
    دانشگاه خوارزمی
    سازمان پدید آورنده
    Department of Civil engineering, Faculty of engineering, Yazd University, Yazd, Iran

    شاپا
    2228-6837
    7386-8222
    URI
    http://jeg.khu.ac.ir/article-1-3009-en.html
    https://iranjournals.nlai.ir/handle/123456789/1055305

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب