• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Mining and Environment
    • Volume 13, Issue 3
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Mining and Environment
    • Volume 13, Issue 3
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Improvement of Small-Scale Dolomite Blasting Productivity: Comparison of Existing Empirical Models with Image Analysis Software and Artificial Neural Network Models

    (ندگان)پدیدآور
    Taiwo, B.
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    3.715 مگابایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Original Research Paper
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Assessment of blast results is a significant approach for the improvement of mining operations. The different procedures for investigating rock fragmentation have their limitations, causing different variation prediction errors. Thus every technique is site-explicit, and applicable for a few explicit purposes. This work evaluates the existing empirical blast fragmentation model predictions in the case study of small-scale dolomite quarries. An attempt is made to compare the prediction accuracy of the modified Kuz-Ram model, Lawal 2021 model, and Kuznetsov-Cunningham-Ouchterlony (KCO) model with the WipFrag© analysis result and proposed artificial neural network (ANN) models. The prediction error analysis of the current models and that of the new proposed ANN models is evaluated using the three model assessment indices. The assessment indices uncover that the KCO model when compared to the modified Kuz-Ram model has the least error for most blast round percentage passing size predicted. However, the proposed artificial neural network models show high prediction exactness in predicting blast fragment mean size than the existing empirical models. Therefore, the proposed ANN models can be used to improve the productivity of small-scale dolomite blasting operation results for practical purposes.
    کلید واژگان
    Small scale mining
    Blasting
    blast fragmentation models
    Artificial Neural Network
    blast optimization

    شماره نشریه
    3
    تاریخ نشر
    2022-07-01
    1401-04-10
    ناشر
    Shahrood University of Technology
    سازمان پدید آورنده
    Department of Mining Engineering, Federal University of Technology, Akure, Nigeria

    شاپا
    2251-8592
    2251-8606
    URI
    https://dx.doi.org/10.22044/jme.2022.11771.2169
    https://jme.shahroodut.ac.ir/article_2507.html
    https://iranjournals.nlai.ir/handle/123456789/981344

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب