• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Physical & Theoretical Chemistry
    • Volume 17, Fall 2020 & Winter 2021
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Physical & Theoretical Chemistry
    • Volume 17, Fall 2020 & Winter 2021
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    QSPR Models to Predict Thermodynamic Properties of Alkenes Using Genetic Algorithm and Backward- Multiple Linear Regressions Methods

    (ندگان)پدیدآور
    Ghaemdoost, fatemehshafiei, fatemeh
    Thumbnail
    نوع مدرک
    Text
    Research Paper
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Quantitative structure–property relationship (QSPR) models establish relationships between different types of structural information to their properties. In the present study the relationship between the molecular descriptors and quantum properties consist of the heat capacity (Cv/J mol-1K-1) entropy (S/J mol-1K-1) and thermal energy (Eth/kJ mol-1) of 100 alkenes is represented. Genetic algorithm (GA) and backward-multiple linear regressions (BW-MLR) were successfully developed to predict quantum properties of alkenes. Molecular descriptors were calculated with Dragon software and the genetic algorithm (GA) method was used to selected important molecular descriptors. The quantum properties were obtained from quantum-chemistry technique at the Hartree-Fock (HF) level using the ab initio 6-31G* basis sets. The predictive powers of the BW-MLR models were discussed by using leave-one-out (LOO) cross-validation and external test set. Results showed that the predictive ability of the models was satisfactory, and the 2D matrix-based descriptors, topological, edge adjacency and Connectivity indices could be used to predict the mentioned properties of 100 alkenes
    کلید واژگان
    Backward- Multiple linear regression
    Molecular descriptors, Genetic algorithm
    Validation
    alkenes

    شماره نشریه
    20202021
    تاریخ نشر
    2021-11-01
    1400-08-10
    ناشر
    Tehran, Islamic Azad University of Iran, Science and Research Branch
    سازمان پدید آورنده
    Department of Chemistry, Arak Branch, Islamic Azad University, Arak, Iran
    Department of Chemistry, Arak Branch, Islamic Azad University, Arak, Iran

    URI
    https://dx.doi.org/10.30495/jptc.2021.20865
    https://jptc.srbiau.ac.ir/article_20865.html
    https://iranjournals.nlai.ir/handle/123456789/971560

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب