• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Advances in Computer Research
    • Volume 13, Issue 3
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Advances in Computer Research
    • Volume 13, Issue 3
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Automatic offline identification of signature author based on deep learning and its evaluation in noisy conditions

    (ندگان)پدیدآور
    Keykhosravi, DavoodRazavi, Seyed NaserMajidzadeh, KambizBabazadeh sangar, Amin
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    1.553 مگابایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Original Manuscript
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Signature identification plays an important role in many areas such as banking, administrative and judicial systems. For this purpose, in this paper, an automatic intelligent framework is developed by combining a deep pre-trained network with a recurrent neural network. The results of the proposed model were evaluated on several valid datasets and collected datasets. Since there was no suitable Persian signature dataset, we collected a Persian signature dataset based on US ASTM guidelines and standards, which can be very effective and profound for deep approaches. Due to the very promising results of the proposed model in comparison with recent studies and conventional methods, to evaluate the resistance of the proposed model to different noises, we added Gaussian Noise, Salt and Pepper Noise, Speckle Noise, and Local var Noise in different SNRs to the raw data. The results show that the proposed model can still be resistant to a wide range of SNRs; So at 15 dB, the accuracy of the proposed method is still above 90%.
    کلید واژگان
    Automatic Identification of the Writer of the Signature
    Pre-trained Network
    Feature Learning
    convolutional neural network (CNN)
    H.3.7. Learning

    شماره نشریه
    3
    تاریخ نشر
    2022-08-01
    1401-05-10
    ناشر
    Sari Branch, Islamic Azad University
    سازمان پدید آورنده
    Department of IT and Computer Engineering, Urmia Branch, Islamic Azad University, Urmia, Iran
    Department of IT and Computer Engineering, Urmia Branch, Islamic Azad University, Urmia, Iran
    Department of IT and Computer Engineering, Urmia Branch, Islamic Azad University, Urmia, Iran.
    Department of IT and Computer Engineering, Urmia Branch, Islamic Azad University, Urmia, Iran.

    شاپا
    2345-606X
    2345-6078
    URI
    https://jacr.sari.iau.ir/article_695329.html
    https://iranjournals.nlai.ir/handle/123456789/947207

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب