• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Global Journal of Environmental Science and Management
    • Volume 4, Issue 4
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Global Journal of Environmental Science and Management
    • Volume 4, Issue 4
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Artificial intelligence-based approaches for multi-station modelling of dissolve oxygen in river

    (ندگان)پدیدآور
    Elkiran, G.Nourani, V.Abba, S.I.Abdullahi, J.
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    792.1کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    ORIGINAL RESEARCH PAPER
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    ABSTRACT: In this study, adaptive neuro-fuzzy inference system, and feed forward neural network as two artificial intelligence-based models along with conventional multiple linear regression model were used to predict the multi-station modelling of dissolve oxygen concentration at the downstream of Mathura City in India. The data used are dissolved oxygen, pH, biological oxygen demand and water temperature at upper, middle and downstream of the river. To predict outlet of dissolved oxygen of the river in each station, considering different input combinations as i) 11 inputs parameters for all three locations except, dissolved oxygen at the downstream ii) 7 inputs for middle and downstream except dissolved oxygen, at the target location and lastly iii) 3 inputs for downstream location. To determine the accuracy of the model, root mean square error and determination coefficient were employed. The simulated results of dissolved oxygen at three stations indicated that, multi-linear regression is found not to be efficient for predicting dissolved oxygen. In addition, both artificial intelligence models were found to be more capable and satisfactory for the prediction. Adaptive neuro fuzzy inference system model demonstrated high prediction ability as compared to feed forward neural network model. The results indicated that adaptive neuro fuzzy inference system model has a slight increment in performance than feed forward neural network model in validation step. Adaptive neuro fuzzy inference system proved high improvement in efficiency performance over multi-linear regression modeling up to 18% in calibration phase and 27% in validation phase for the best models.
    کلید واژگان
    Adaptive neuro fuzzy inference system (ANFIS)
    Feed forward neural network (FFNN)
    Multi-linear regression (MLR)
    Dissolve oxygen (DO)
    Water quality
    Yamuna River
    Environmental modeling

    شماره نشریه
    4
    تاریخ نشر
    2018-10-01
    1397-07-09
    ناشر
    GJESM Publisher
    سازمان پدید آورنده
    Faculty of Civil and Environmental Engineering, Near East University, Near East Boulevard 99138, Nicosia, Cyprus
    Department of Water Resources Engineering, Faculty of Civil Engineering, University of Tabriz, Tabriz, Iran
    Faculty of Civil and Environmental Engineering, Near East University, Near East Boulevard 99138, Nicosia, Cyprus
    Faculty of Civil and Environmental Engineering, Near East University, Near East Boulevard 99138, Nicosia, Cyprus

    شاپا
    2383-3572
    2383-3866
    URI
    https://dx.doi.org/10.22034/gjesm.2018.04.005
    https://www.gjesm.net/article_32056.html
    https://iranjournals.nlai.ir/handle/123456789/92045

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب