• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات فارسی
    • فصلنامه علمی-پژوهشی علوم زمین
    • دوره 21, شماره 84
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات فارسی
    • فصلنامه علمی-پژوهشی علوم زمین
    • دوره 21, شماره 84
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    بررسی تأثیر نگار صوتی بر برآورد سنگ‌شناسی توسط نمودارهای حاصل از چاه توسط شبکه عصبی مصنوعی در یکی از مخازن میدان پارس جنوبی

    (ندگان)پدیدآور
    دزفولیان, محمد امین
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    1.208 مگابایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    مقاله پژوهشی
    زبان مدرک
    فارسی
    نمایش کامل رکورد
    چکیده
    پیشی‌بینی سنگ‌شناسی، مرحله‌ای  اساسی در مهندسی نفت و ارزیابی سازند است. تحقیقی که در اینجا عرضه می‌شود، نوعی مدل‌سازی شبکه‌های عصبی مصنوعی، به منظور استفاده از نگارهای چاه برای برآورد سنگ‌شناسی در یکی از مخازن میدان پارس جنوبی است. در این تحقیق از دو شبکه با روش پس انتشار خطا ((back propagation error; BP  سه لایه و الگوریتم آموزش لونبرگ- مارکوآرت، برای برآورد سنگ‌شناسی، استفاده شده است. شبکه در حالت اول، نگارهای پرتو گاما،  نوترون، چگالی و اثرفتوالکتریک (PEF)  را به صورت ورودی به کار می‌برد، حال آن‌که در شبکه دوم نگار صوتی مربوط به این داده‌ها نیز به ورودی‌ها اضافه و نتایج در دو حالت مقایسه شده‌اند. با توجه به هزینه‌های  بالای مغزه‌گیری از این روش می‌توان هزینه‌های مغزه‌گیری را کاهش داد. در این مقاله، از داده‌های مربوط به چهار چاه در میدان پارس جنوبی استفاده شده است، به این صورت که شبکه، ابتدا در یکی از چاه‌های مخزن (چاه C) که دارای تحلیل مغزه بود، آموزش داده شد و در چاه دیگر (چاه D) که داده‌های آن در آموزش شبکه سهمی نداشت، آزمایش شد و پس از اطمینان از کارآیی آن، شبکه برای برآورد سنگ‌شناسی در دو چاه دیگر (چاه A وB) استفاده شد. سنگ‌های بخش بررسی شده عبارتند از: دولومیت، سنگ‌آهک، سنگ‌آهک دولومیتی، دولومیت آهکی، انیدریت، شیل، سنگ‌آهک شیلی و دولومیت شیلی. در حالت اول مقدار میانگین مربعات خطا (mean square error; MSE)  برای چاه A برابر 081/0و برای چاه B برابر094/ به دست آمد، در صورتی که در حالت دوم و اضافه شدن نگار صوتی به دیگر ورودی‌ها مقدار میانگین مربعات خطا برای چاه A برابر051/0 و برای چاه B برابر 063/0 شده است. بر اساس این مقایسه، مشخص شد که دقت مدل در حالت دوم بهبود قابل توجهی یافته و نگار صوتی توانسته است سنگ‌شناسی برآورد شده را به مقدار واقعی نزدیک‌تر کند.
    کلید واژگان
    سنگ‌شناسی
    چاه‌نگاری
    مغزه
    شبکه عصبی مصنوعی
    مخزن هیدروکربنی
    نگار صوتی

    شماره نشریه
    84
    تاریخ نشر
    2012-08-22
    1391-06-01
    ناشر
    سازمان زمین شناسی و اکتشافات معدنی کشور
    Geological Survey of Iran
    سازمان پدید آورنده
    دانشگاه آزاد اسلامی، واحد علوم و تحقیقات، باشگاه پژوهشگران جوان، تهران، ایران‌‌

    شاپا
    1023-7429
    2645-4963
    URI
    https://dx.doi.org/10.22071/gsj.2012.53959
    http://www.gsjournal.ir/article_53959.html
    https://iranjournals.nlai.ir/handle/123456789/90698

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب