• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات فارسی
    • فصلنامه علمی-پژوهشی علوم زمین
    • دوره 26, شماره 104
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات فارسی
    • فصلنامه علمی-پژوهشی علوم زمین
    • دوره 26, شماره 104
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    استفاده از مدل هوش مصنوعی مرکب نظارت شده برای بهبود مدل دراستیک (مطالعه موردی: آبخوان دشت اردبیل)

    (ندگان)پدیدآور
    قره‎خانی, مریمندیری, عطااللهاصغری‌مقدم, اصغر
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    4.469 مگابایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    مقاله پژوهشی
    زبان مدرک
    فارسی
    نمایش کامل رکورد
    چکیده
    آلودگی منابع آب زیرزمینی به علت نفوذ آلاینده­ها از سطح زمین به سامانه آب زیرزمینی به‎ویژه در مناطق خشک و نیمه‎خشک که با کمبود کمی و کیفی منابع آب روبه‌رو هستند؛ یکی از معضلات جدی به شمار می­آید. بنابراین ارزیابی آسیب­پذیری آب زیرزمینی به منظور شناسایی مناطق دارای پتانسیل بالای آلودگی برای مدیریت منابع آب زیرزمینی ضروری است. در این پژوهش آسیب­پذیری آبخوان دشت اردبیل در برابر آلودگی با استفاده از روش دراستیک مورد بررسی قرار گرفت. در مدل دراستیک هفت متغیر مؤثر در آسیب­پذیری که شامل ژرفای آب زیرزمینی، تغذیه خالص، محیط آبخوان، محیط خاک، توپوگرافی، محیط غیر اشباع و هدایت هیدرولیکی است؛ به‎صورت هفت لایه رستری تهیه شد و پس از رتبه­دهی و وزن­دهی شاخص دراستیک به دست آمد که برای دشت اردبیل شاخص دراستیک میان 82 تا 151 به دست آمد. اما از آنجایی که مشکل اصلی این مدل اعمال‎نظرهای کارشناسی برای رتبه­دهی و وزن­دهی متغیرهای به کار رفته در آن است؛ بنابراین هدف اصلی این پژوهش بهبود مدل دراستیک با استفاده از 5 روش هوش مصنوعی از جمله شبکه عصبی پیشرو، شبکه عصبی برگشتی، فازی ساجنو، فازی ممدانی و مدل مرکب است. تا بدین روش بتوان به نتایج دقیق­تری از ارزیابی آسیب­پذیری دست یافت. با توجه به ناهمگنی موجود در دشت اردبیل این دشت به سه بخش خاوری، باختری و جنوبی تقسیم و مدل­های هوش مصنوعی به‌طور جداگانه برای هر بخش اجرا شد. به این منظور متغیرهای دراستیک به عنوان ورودی مدل و شاخص دراستیک به عنوان خروجی مدل تعریف شدند و مقادیر نیترات مربوطه به 2 دسته آموزش و آزمایش تقسیم شد. شاخص دراستیک مربوط به مرحله آموزش با مقادیر نیترات مربوطه تصحیح و پس از آموزش مدل، در مرحله آزمایش نتایج مدل­ها با استفاده از مقادیر نیترات ارزیابی شد. نتایج نشان داد که همه روش­های هوش مصنوعی توانایی بالایی در بهبود مدل دراستیک دارند؛ اما در این میان، مدل هوش مصنوعی مرکب (SCMAI) نتایج بهتری را دربر داشت. بر پایه این مدل، بخش­های باختری و شمالی دشت پتانسیل آلودگی بالایی دارد و باید محافظت بیشتری از این مناطق صورت گیرد.
    کلید واژگان
    آسیب پذیری آب زیرزمینی
    دشت اردبیل
    دراستیک
    هوش مصنوعی
    مدل SCMAI

    شماره نشریه
    104
    تاریخ نشر
    2017-08-23
    1396-06-01
    ناشر
    سازمان زمین شناسی و اکتشافات معدنی کشور
    Geological Survey of Iran
    سازمان پدید آورنده
    دانشجوی دکترا، دانشکده علوم طبیعی، دانشگاه تبریز، تبریز، ایران
    استادیار، دانشکده علوم طبیعی، دانشگاه تبریز، تبریز، ایران
    استاد، دانشکده علوم طبیعی، دانشگاه تبریز، تبریز، ایران

    شاپا
    1023-7429
    2645-4963
    URI
    https://dx.doi.org/10.22071/gsj.2017.50176
    http://www.gsjournal.ir/article_50176.html
    https://iranjournals.nlai.ir/handle/123456789/90626

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب