• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Advances in Computer Research
    • Volume 12, Issue 3
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Advances in Computer Research
    • Volume 12, Issue 3
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    NSE: An effective model for investigating the role of pre-processing using ensembles in sentiment classification

    (ندگان)پدیدآور
    Asgarnezhad, RaziehMonadjemi, Amirhassan
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    1.084 مگابایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Original Manuscript
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    With the extensive Internet applications, review sentiment classification has attracted increasing interest among text mining experts. Traditional bag of words approaches did not indicate multiple relationships connecting words while emphasizing the pre-processing phase and data reduction techniques, making a huge performance difference in classification. This study suggests a model as a different efficient model for multi-class sentiment classification using sampling techniques, feature selection methods, and ensemble supervised classification to increase the performance of text classification. The feature selection phase of our model has applied n-grams, a computational method that optimizes feature selection procedure by extracting features based on the relationships of the words to improve a candidate selection of features. The proposed model classifies the sentiment of tweets and online reviews through ensemble methods, including boosting, bagging, stacking, and voting in conjunction with supervised methods. Besides, two sampling techniques were applied in the pre-processing phase. In the experimental study, a comprehensive range of comparative experiments was conducted to assess the effectiveness of our model using the best existing works in the literature on well-known movie reviews and Twitter datasets. The highest accuracy and f-measure for our model obtained 92.95 and 92.65% on the movie dataset, 90.61 and 87.73% on the Twitter dataset, respectively.
    کلید واژگان
    Data mining
    Sentiment classification
    Feature Selection
    Pre-processing
    Ensembles
    G. Information Technology and Systems

    شماره نشریه
    3
    تاریخ نشر
    2021-08-01
    1400-05-10
    ناشر
    Sari Branch, Islamic Azad University
    سازمان پدید آورنده
    Department of Computer Engineering, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
    Senior Lecturer, School of Computing, National University of Singapore, 119613, Singapore

    شاپا
    2345-606X
    2345-6078
    URI
    http://jacr.iausari.ac.ir/article_687713.html
    https://iranjournals.nlai.ir/handle/123456789/904752

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب